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Graphical Granger Modeling for Climate Data Analysis 

 A data-centric approach to climate change attribution 

 Started as an IBM internal Exploratory Research (ER) project in 2008 
• A. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich, J. Hosking, N. Abe, “Spatio-temporal causal modeling for 

climate change attribution”, KDD 2009 

• A. Lozano, N. Abe, Y. Liu, S. Rosset, “Grouped graphical Granger modeling methods for temporal causal modeling”, 

KDD 2009… 

 Based on spatial temporal observations on climate and forcings, discover and quantify the 

causal relationships between them 
• Build a graph where each node corresponds to a spatio-temporal series 

 Extreme events are modeled and incorporated into the causal modeling. 
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Granger Causality and Graphical Granger Modeling 

 Granger causality  

 First introduced by the Nobel prize winning economist, Clive Granger 

 Definition: a time series x is said to “Granger cause” another time series y, if and only if regressing for y in 

terms of both past values of y and x is statically significantly better than that of regressing in terms of past 

values of y only 

 

 

 

 

 

 

 

 Combination of Granger Causality and cutting-edge graphical modeling techniques provides efficient and 

effective methodology for graphical causal modeling of temporal data 
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Graphical Granger Modeling Methods (Cont’d) 

 We are interested in whether one time series causes another as a whole, and hence in: 

 Whether there exists any time lag d such that yt-d provides additional info for predicting xt 

 The relevant question is not  

 whether an individual lagged variable is to be included in the model  

The relevant question is 

  whether the lagged variables for a given time series, as a group, should be included 

 Our methodology takes into account the group structure imposed by time series into the 

penalty function used in the variable selection process (in contrast to existing methods) 
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Graphical Granger Modeling Methods based on Feature Group Selection 

 We have developed a methodology that leverage temporal constraints in graphical Granger 
modeling by treating lagged variables of the same feature as a group in variable selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A series of improved algorithms have been devised on this general problem 

 Group Lasso          Group Boosting          Group OMP          Group Elastic Net 

Our methods 

Existing methods 

Example Outputs 

Accuracy Comparison 

(a) True graph      (b) Existing Method 1    (c) Existing Method 2 

(d) Our Method 1       (e) Our Method 2       (f) Our Method 3 

Method Existing 1 Existing 2 Our 1 Our 2 Our 3

Accuracy(%) 62 65 92 87 91
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 Spatial Extension of Granger Causality 
 Assume that the measurements are sampled along a regular spatial grid 

 

 Assume that each point s is influenced by a finite neighborhood around it 

                                    where                                           is a set of relative locations 

 

 x is said to “Granger cause” y, if and only if regression (C) is statically 
significantly better than regression (D) 

 

 
 

Spatio-temporal Causal modeling by Graphical Granger Modeling 

(C) 

(D) 

t-1 

t-L 

t-1 

t-L 

y 

y 

x 

t 



IBM Research – Mathematical Sciences Department 

© Copyright IBM Corporation 2009 Slide 7 

Spatial-temporal Causal modeling by Graphical Granger Modeling (cont’d) 

 Spatial extension of graphical Granger modeling method 

 For a given measurement xi (e.g. temperature), can view the regression with variable 

selection for         in terms of   

   as an application of a Granger test on       against 

 Again, what we are interested in is 

 whether an entire series  

 provides additional information for the prediction of 

 and not whether for specific spatial and time lags, they provides additional information 

 

 

 

 

 

 

 Take into account the group structure imposed by the spatial-temporal series into 

the fitting criterion used in the variable selection process 

 Treat all the spatially and temporally lagged variables of a measurement as a group 

 Introduce a notion of “distance” for spatial neighbors 
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 Our proposed algorithm leverages both temporal and spatial constraints by formulating an 

appropriate form of regularization  

 

 

 

 

 

 

 

 

 Where                                       and  

 

 The group elastic net problem can be efficiently solved:  

 Via some basis change (1) can be transformed into 

 
 

 

• Hence the name “group elastic net”, as it can be seen as a group version of the elastic net problem [Zou& Hastie 2005] 

 Via an additional transformation of X and Y, this can be transformed into 

 which is the Group Lasso problem [Yuan & Lin 2006], and can be efficiently solved 
 

Spatio-temporal causal modeling via Group Elastic Net 
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Attributing Extreme Events via Incorporation in Graphical Granger Modeling 

 We would like to identify not only the causal relationships  

 between anthropogenic and natural factors, and climate variables  

 but also relating such factors to extreme climate events since a more pressing question 

is: What causes heat waves, floods, hurricanes, etc 

 

 The causation structure of extreme events can be significantly different than that 

of “normal” behavior so we need to incorporate extreme variables into the 

graphical Granger modeling  

 

 Preliminary methodology involves 

 Estimating the N years return level of the extreme variable Text over space and time, 

using it as proxy for variable Text in the Graphical Granger Modeling  
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Extreme Value Modeling via Point process approach 
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 Generalized Extreme Value (GEV ) distribution is the limit distribution of properly normalized 

max(X1,…,Xn) as             . GEV has 3 parameters: 
 

 Assume N(A) is the number of peaks over high threshold u, where 

   The limiting distribution of N(A) is                   , with intensity measure on A given by 

 

 

 

 

 

 

 N-year return level: what degree of temperature will be exceeded with probability 1/N in a 

given year? 

 ZN : the level expected to be exceeded in any year with probability 1/N         

 Given one year observation X1, X2, …, Xn, we have 

 Define                                       then 
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Experiments on climate data 

 We used standard data for a given geographical region on a multitude of relevant 
variables published by government/scientific institutions 
 Challenge 1: Obtaining longitudinal records with comparable temporal and spatial 

resolution  

 Challenge 2: Large variety of formats 

 

 Data pre-processing (adhering to standard practices in climate modeling) 
 Each dataset is “normalized” into a standard format 

 Interpolation/smoothing 
• We interpolated data in a common grid to join multiple data sources, using thin plate splines to be 

consistent with the interpolation used for the CRU data 

• Spatial averaging applied on CRU and NASA data as they have a finer resolution grid 

 De-seasonalization by removing seasonal averages 
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Details on the Climate Data Used 

 Data from 1990-2002 

 

 2.5x2.5 degree grid over North America 

 Latitudes in (30.475, 50.475) 

 Longitudes in (-119.75,-79.75) 

 

 Two datasets 

 Monthly  

 Yearly includes the estimated return levels 

 

 Spatial temporal causal modeling with 

 3x3 spatial neighborhood 

 Lag of 3 months for monthly data 

 Lag or 3 years for yearly data 

 

 Having two different time resolutions allows investigating  short/longer term 

influences 
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Attributing the change in 1-year return level for temperature extremes using annual data 

n c σ2 

Estimated noise variance is 

multiplied by a varying constant 

Both measures suggest that CO2 and other greenhouse gases 

are judged to have greater strength than solar radiance 

 Two separate metrics to assess the strength of 

the causal relationships 

 The l-2 norm of the coefficients corresponding to the 

variable group  

 The point at which a causal link in question appears in 

the output graph, as we vary the emphasis on the 

model complexity penalty in BIC criterion 
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Attributing the change in temperature using yearly data 
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Attributing the change in temperature using monthly data 
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Concluding Remarks 

 We initiated a data-centric approach to climate change attribution and obtained 

preliminary yet encouraging results 

 

 Directions for extensions include 

 Fuller analysis (e.g. using a finer resolution dataset over longer time span) 

 Taking into account “tele-connections” 

 Validation with domain experts 

 Exploring ways in which our methodology can provide assistance to the main stream, 

simulation-based approach 
• Coupling with simulation based approach (e.g. data assimilation?) 

 

 Other on-going methodological improvement 

 Developing regional models and discovering regional interactions 

 Developing more involved ways to combine extreme events and causal modeling 

 Developing algorithms for discovering regime shifts  

 Developing scalable versions of our algorithms 

 Etc, etc 

 
 


