Graphical Models for Climate Data Analysis: Drought Detection and Land Variable Regression

Arindam Banerjee <u>banerjee@cs.umn.edu</u> Dept of Computer Science & Engineering University of Minnesota, Twin Cities

Joint Work with: Snigdhansu Chatterjee, Soumyadeep Chatterjee, Auroop Ganguly, Stefan Liess, Peter Snyder

First Workshop on Understanding Climate Change from Data August 15-16, 2011

Graphical Models: What and Why

- Graphical models
 - ependencies between (random) variables
 - Closer to reality, learning/inference is much more difficult
- Basic nomenclature
 - Node = Random Variable (hidden/observed), Edge = Statistical Dependency
- Directed Graphs
 - A *directed* graph between random variables, causal dependencie X
 - Example: Bayesian networks, Hidden Markov Models
 - Joint distribution is a product of P(child|parents)
- Undirected Graphs
 - An *undirected* graph between random variables
 - Example: Markov/Conditional random fields
 - Joint distribution in terms of potential functions

Х

X

Graphical Models for Climate Data Analysis

- Abrupt Change Detection
 - Climate change is not always smooth and gradual
 - Sudden and Large changes in environmental conditions
 - First Step: Detecting Abrupt Changes
 - Focus: Drought Detection
- Predictive Modeling
 - High-dimensional problems, Nonlinear dependencies
 - The "High p, Low n" regime
 - First Step: Effective high-dimensional regression for climate problems
 - Focus: Land variable regression

Drought Detection

- Significant droughts
 - Persistent over space and time
 - Catastrophic consequences
- Examples:
 - Late 1960s Sahel drought
 - 1930s North American Dust Bowl
- Dataset: Climate Research Unit
 - <u>http://data.giss.nasa.gov/precip_cru/</u>
 - Monthly precipitation over land
 - Duration: 1901 to 2006
 - Resolution: 0.5 latitude X 0.5 longitude

Detection with Markov Random Field (MRF)

- Model dependencies using a 4-nearest neighbor grid
 - Replicate grid over time
 - Each node can be 0 (normal) or 1 (dry)
- Toy example:
 - -m = 3, n = 4, N = 12, T = 5
 - Total # States: $2^{60} = 1.1529 \times 10^{18}$
- CRU data:
 - -m = 720, n = 360, N = 67420, T = 106
 - Total # States: $2^{7146520} > 10^{2382200}$
- MAP Inference:
 - Find the most likely "state" of the system
 - Integer programming with LARGE number of states
 - Postprocess MAP state to identify significant droughts

Drought Regions from MRFS

Land Variable Regression

- Land-Sea variable interactions
 - How do sea variables affect land variables?
 - Are proximal locations important?
 - Are there long range spatial dependencies (tele-connections)?
- NCEP/NCAR Reanalysis 1: monthly means for 1948-2010
 - Covariates: Temperature, Sea Level Pressure, Precipitation, Relative Humidity, Horizontal Wind Speed Vertical Wind Speed
 - Response: Temperature, Precipitation at 9 locations
- High-dimensional Regression
 - Dimension p = Lm, L locations, m variables/location
 - Two considerations:
 - Not all locations are relevant
 - Even if a location is relevant, not all variables are relevant

Land Regions for Prediction: Temp, Precip

Land regions chosen for predictions

Graphical Models

Ordinary Least Squares

• Naive method: Use *ordinary least squares* (OLS) :

$$\hat{\theta} := \arg \min_{\theta \in \mathbb{R}^{mL}} \left\{ \frac{1}{2n} \|y - X\theta\|_2^2 \right\}$$

- For n < mL, OLS estimate $\hat{\theta}$ non-unique
- In general, *y* depends on all *mL* covariates: complex model

Sparse Group Lasso (SGL)

• High-dimensional Regression with "Sparse" "Group Sparsity"

$$\hat{\theta}_{SGL} = \arg\min_{\theta \in \mathbb{R}^{mL}} \left\{ \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_{1,\mathcal{G}} \right\}$$
$$\|\theta\|_1 = \sum_{i=1}^{mL} |\theta_i| \qquad \|\theta\|_{1,\mathcal{G}} = \sum_{k=1}^{L} \|\theta_{G_k}\|_2$$
$$\mathcal{G} = \{G_1, \dots, G_L\}: \text{ groups of } m \text{ variables at } L \text{ locations}$$

Sparse Group Lasso

- Optimization methods:
 - Proximal method: Block-coordinate Dual Ascent
 - Gradient based Primal Method
- Consistency and Rates of Convergence:

Theorem Let A be any subspace of \mathbb{R}^p of dimension s_A . Let θ^* be the optimal (unknown) regression parameter, and let $r_{(1,\mathcal{G}_{\nu},\alpha)}^{A^{\perp}}(\theta^*)$ be the sparse-group lasso norm of θ^* restricted to A^{\perp} , the orthogonal subspace of A. Then, if λ_n satisfies the lower bound in Lemma 1, with probability at least $(1 - \frac{2}{(pT)^k})$, we have

$$\|\hat{\theta_{\lambda_n}} - \theta^*\|_2^2 \le \frac{4\lambda_n^2}{k_{\mathcal{L}}^2} s_A + \frac{2\lambda_n}{k_{\mathcal{L}}} r_{(1,\mathcal{G}_\nu,\alpha)}^{A^\perp}(\theta^*) ,$$

where $\hat{\theta_{\lambda_n}}$ is the SGL estimator

Corollary If the optimal parameter θ^* is in the subspace A, then $\|\hat{\theta}_{\lambda_n} - \theta^*\|_2^2 \leq \frac{4\lambda_n^2}{k_{\mathcal{L}}^2}s_A = O\left(\frac{\log p}{n}\right)$ Graphical Models

Error (RMSE): SGL, NC, OLS

Variable	Region	SGL	Network Clusters	OLS
Air Temperature	Brazil	0.198	0.534	0.348
	Peru	0.247	0.468	0.387
	West USA	0.270	0.767	0.402
	East USA	0.304	0.815	0.348
	W Europe	0.379	0.936	0.493
	Sahel	0.320	0.685	0.413
	S Africa	0.136	0.726	0.267
	India	0.205	0.649	0.300
	SE Asia	0.298	0.541	0.383
Precipitation	Brazil	0.261	0.509	0.413
	Peru	0.312	0.864	0.523
	West USA	0.451	0.605	0.549
	East USA	0.365	0.686	0.413
	W Europe	0.358	0.45	0.551
	Sahel	0.427	0.533	0.523
	S Africa	0.235	0.697	0.378
	India	0.146	0.672	0.264
	SE Asia	0.159	0.665	0.312

20

SGL: Regression with Feature Selection

Relevant Variables for Temperature Prediction in Brazil

Robustness: Regularization Path of SGL

Regularization Path: Temperature prediction in Brazil

Spread of Coefficients for SGL

Component bar chart of coefficient magnitudes of variables for temperature prediction in Brazil

Summary

- Graphical Models for Climate Data Analysis
 - "Networks" over random variables
 - Captures dependencies among variables or "nodes"
- Abrupt Change Detection
 - Focus: Drought Detection using MRFs
 - Other univariate/multivariate abrupt change detection
- Predictive Modeling
 - Focus: Land variable regression using SGL
 - Other high-dimensional predictive models
 - Sparse Structure Learning
 - Sparse Extreme-value or Quantile Regression