Simultaneous quantiles of several variables (and their role in missing data imputation)

Snigdhansu Chatterjee

School of Statistics, University of Minnesota

Partially joint work with: N. Mukhopadhyay, Virginia Commonwealth U.

UMN-CS Workshop, August 16, 2011

- Suppose $X \in \mathbb{R}$ is a random variable.
- For any α ∈ (0, 1), the αth quantile Q_α is the number below which X is observed with probability α.
- A bit more precisely: $Q_{\alpha} = \inf\{q : \mathbb{P}[X \leq q] \geq \alpha$.
- If X is continuous, there is a one-to-one relationship between α and Q_α.
- We should not use this co-ordinate-wise for multivariate data, since this ignores all dependency patterns and is statistically inferior.

Plot of cumulative distribution function

Ansu Chatterjee (U. Minnesota)

Univariate to multivariate quantiles

- (Univariate quantiles: an alternative view) Recall that the *median* is the unique minimizer of $\mathbb{E}|X q|$.
- (An extension) The α^{th} quantile Q_{α} is the unique minimizer of $\mathbb{E}\{|X q| + (2\alpha 1)(X q)\}.$
- (Alternative notation) The βth quantile Q_β is the unique minimizer of E{|X − q| + β(X − q)}, for every β ∈ (−1, 1). Identify β = 2α − 1.
- (Chaudhuri's geometric quantiles) For random vector $X \in \mathbb{R}^{p}$, for every $u \in \mathcal{B}_{p} = \{x : ||x|| < 1\}$, the u^{th} quantile Q(u) is defined as the minimizer of

$$\Psi_u(q) = \mathbb{E}[||X-q|| + \langle u, X-q \rangle].$$

Univariate to multivariate quantiles

- (Univariate quantiles: an alternative view) Recall that the *median* is the unique minimizer of $\mathbb{E}|X q|$.
- (An extension) The α^{th} quantile Q_{α} is the unique minimizer of $\mathbb{E}\{|X q| + (2\alpha 1)(X q)\}.$
- (Alternative notation) The βth quantile Q_β is the unique minimizer of E{|X − q| + β(X − q)}, for every β ∈ (−1, 1). Identify β = 2α − 1.
- (Chaudhuri's geometric quantiles) For random vector X ∈ ℝ^p, for every u ∈ B_p = {x : ||x|| < 1}, the uth quantile Q(u) is defined as the minimizer of

$$\Psi_u(q) = \mathbb{E}\left[||X-q|| + \langle u, X-q \rangle\right].$$

- (Univariate quantiles: an alternative view) Recall that the median is the unique minimizer of E|X − q|.
- (An extension) The α^{th} quantile Q_{α} is the unique minimizer of $\mathbb{E}\{|X q| + (2\alpha 1)(X q)\}.$
- (Alternative notation) The βth quantile Q_β is the unique minimizer of E{|X q| + β(X q)}, for every β ∈ (-1, 1). Identify β = 2α 1.
- (Chaudhuri's geometric quantiles) For random vector X ∈ ℝ^ρ, for every u ∈ B_ρ = {x : ||x|| < 1}, the uth quantile Q(u) is defined as the minimizer of

$$\Psi_u(q) = \mathbb{E}\left[||X-q|| + \langle u, X-q \rangle\right].$$

- (Univariate quantiles: an alternative view) Recall that the median is the unique minimizer of E|X − q|.
- (An extension) The α^{th} quantile Q_{α} is the unique minimizer of $\mathbb{E}\{|X q| + (2\alpha 1)(X q)\}.$
- (Alternative notation) The βth quantile Q_β is the unique minimizer of E{|X q| + β(X q)}, for every β ∈ (-1, 1). Identify β = 2α 1.
- (Chaudhuri's geometric quantiles) For random vector X ∈ ℝ^p, for every u ∈ B_p = {x : ||x|| < 1}, the uth quantile Q(u) is defined as the minimizer of

$$\Psi_u(q) = \mathbb{E}\left[||X - q|| + \langle u, X - q \rangle\right].$$

Chaudhuri's geometric quantiles

For every $u \in \{x : ||x|| < 1\}$, Q(*u*) minimizes $\mathbb{E}[||X - q|| + \langle u, X - q \rangle]$.

- Define U = u/||u|| for $u \neq 0$. Define $\beta = ||u||$, thus $u = \beta U$.
- Projection of X in the direction of u is $X_U U$, where $X_U = \langle X, U \rangle$. The orthogonal projection is $X_{U^{\perp}} = X - X_U U$.
- For every $\lambda \in \mathbb{R}$, the generalized spatial quantiles minimize:

$$\mathbb{E}\left[||X_{U} - q_{U}||\left[1 + \lambda(X_{U} - q_{U})^{-2}||X_{U^{\perp}} - q_{U^{\perp}}||^{2}\right]^{1/2} + \beta(X_{U} - q_{U})\right]$$

For $\lambda = 1$ we get Chaudhuri's quantiles.

 For λ = 0 we get the *projection quantile*. Computationally simple, no limitations from sample size and dimension, works for infinite-dimensional observations, plenty of good theoretical properties.

Ansu Chatterjee (U. Minnesota)

- Sample generalized spatial quantiles are consistent, and asymptotically Gaussian with an intractable asymptotic dispersion parameter.
- The generalized bootstrap can be used for inference and obtaining all statistical properties of these quantiles. (Bootstrap works great with parallel processing. Excellent theoretical properties.)
- Projection quantiles have a one-to-one relationship like univariate quantiles.
- Projection quantiles based confidence sets have exact coverage.

- Sample generalized spatial quantiles are consistent, and asymptotically Gaussian with an intractable asymptotic dispersion parameter.
- The generalized bootstrap can be used for inference and obtaining all statistical properties of these quantiles. (Bootstrap works great with parallel processing. Excellent theoretical properties.)
- Projection quantiles have a one-to-one relationship like univariate quantiles.
- Projection quantiles based confidence sets have exact coverage.

- Sample generalized spatial quantiles are consistent, and asymptotically Gaussian with an intractable asymptotic dispersion parameter.
- The generalized bootstrap can be used for inference and obtaining all statistical properties of these quantiles. (Bootstrap works great with parallel processing. Excellent theoretical properties.)
- Projection quantiles have a one-to-one relationship like univariate quantiles.
- Projection quantiles based confidence sets have exact coverage.

- Sample generalized spatial quantiles are consistent, and asymptotically Gaussian with an intractable asymptotic dispersion parameter.
- The generalized bootstrap can be used for inference and obtaining all statistical properties of these quantiles. (Bootstrap works great with parallel processing. Excellent theoretical properties.)
- Projection quantiles have a one-to-one relationship like univariate quantiles.
- Projection quantiles based confidence sets have exact coverage.

- Sample generalized spatial quantiles are consistent, and asymptotically Gaussian with an intractable asymptotic dispersion parameter.
- The generalized bootstrap can be used for inference and obtaining all statistical properties of these quantiles. (Bootstrap works great with parallel processing. Excellent theoretical properties.)
- Projection quantiles have a one-to-one relationship like univariate quantiles.
- Projection quantiles based confidence sets have exact coverage.

Example scatter plot

Bivariate Normal

Ansu Chatterjee (U. Minnesota)

Multivariate quantiles

Example scatter plot

Normal Mixture

Ansu Chatterjee (U. Minnesota)

Multivariate quantiles

- Uncertainty quantification in a variety of ways.
- Robust estimation, inference.
- Less restrictive statistical assumptions needed.
- Heteroscedastic, "local" regression. (Quantile regression is extensively used by economists.)
- Nonlinear, non-smooth projections.
- Modeling of extremes.
- Missing data imputation (missing at random, an alternative to multiple imputation with comparable/better features).