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Take Home Points

Here I introduce a new spatial framework for studying
hurricane climate change.

I show hexagons are efficient at covering hurricane tracks.

They provide a scaffolding for combining hurricane attribute
data and spatial climate data.

Hurricane seasons having similar tracks can be assessed and
grouped.

Regional cyclone frequency and intensity variations can be
mapped.
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Take Home Points (continued)

Geographically-weighted regression of cyclone intensity on
SST is performed using the hexagons.

Results confirm the importance of warm oceans to cyclone
intensity, especially over regions where the heat content is
largest.

Greatest mismatch between observed and predicted intensity
occurs near land.

The framework is ideally suited for comparing tropical
cyclones generated from climate models.
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Problem: Storm tracks don’t match climate data

Sea Surface Temperature (oC)
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Solution: Tracks as grids; New problem: Efficiency
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Hexagons: More efficient at covering tracks
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Analogue seasons
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How well do they match?
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Hurricane frequency and intensity

a

Storm Hours
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Sea surface & upper air temperatures

a

Sea Surface Temperature (oC)
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b

50 mb Air Temperature (oC)
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Grouped by SST and Intensity

Low SST, Low Intensity
Low SST, High Intensity
High SST, Low Intensity
High SST, High Intensity
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Fly in
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Export as KML layer
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Spatial autocorrelation: Moran’s I

Moran’s I

I =
n

s

yTWy

yT y

n is the number of hexagons

y is the vector of cyclone intensities one for each hexagon
[deviations from the overall mean]

W is a weights matrix indicating which hexagons are
neighbors

s is the sum over all the weights, and

subscript T is the vector transpose operator
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Spatial autocorrelation: Statistical significance
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Ordinary vs geographically-weighted regression

Ordinary least-squares regression

y = Xβ + ε

β is a vector of regression coefficients

ε ∼ N(0, σ2) is a vector of independent and identically
distributed residuals with variance σ2

Maximum likelihood estimate for β

β̂ = (XTX )−1XT y
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Ordinary vs geographically-weighted regression

Geographically-weighted regression

y = Xβ(g) + ε

where g is a vector of hexagon locations

Maximum likelihood estimate for β(g)

β̂(g) = (XTWX )−1XTWy

where W is a weights matrix given by

Weights matrix

W = exp(−D2/h2)

where D is a matrix of pairwise distances between the hexagons
and h is the bandwidth.
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Geographically-weighted regression: Results

a

Effect of SST on Intensity (m s−1/oC)

−16 −12 −8 −4 0 4 8 12 16

b

Significance of the Effect (t−value)
−5 −4 −3 −2 −1 0 1 2 3 4 5
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Geographically-weighted regression: Does scale matter?
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Effect of SST on Intensity (m s−1/oC)
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Geographically-weighted regression: Residuals
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Local Poisson regression: Trends in hurricane frequencies
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Observed vs modeled (CMIP3) tropical cyclones
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Summary

Hexagons provide a scaffolding to combine hurricane attribute
data with spatial climate data.

The framework opens new areas of research in the field of
hurricane climatology.

It is ideally suited for quantitative comparisons of tropical
cyclones generated from Global Climate Models (GCMs).

Thank you for your attention. Questions?
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