Climate Change, Urbanization, and the Indian Monsoon Rainfall: Toward Informing Climate Science, Adaptation Decisions, and Mitigation Policies with Data-Guided Methods

-10 0 10 20 30

Contributors acknowledged on websites: NSF "Expeditions in Computing" http://climatechange.cs.umn.edu/

ORNL "Climate Extremes"

http://www.ornl.gov/knowledgediscovery/ClimateExtremes/

Managed by UT-Battelle for the Department of Energy

Auroop R. Ganguly, PhD

Senior R&D Staff, Oak Ridge National Laboratory Computational Science and Engineering Division Oak Ridge Climate Change Science Initiative

Joint Faculty, University of Tennessee at Knoxville Civil and Environmental Engineering Industrial and Information Engineering

gangulyar@ornl.gov

PS: We're moving!

Auroop R. Ganguly → Assoc. Prof., CEE, **Northeastern University** starting August 31, 2011, auroop@alum.mit.edu Evan Kodra & Joshua Tolen → GRAs, CEE, **Northeastern University** starting September 1, 2011, <u>kodra.e@husky.neu.edu</u>, <u>tolen.j@husky.neu.edu</u>

Challenge: translate climate model derived insights to decision and policy tools

Climate extremes: Science, impacts, policy

Science

- Extremes characterizations
- Uncertainty assessments
- Enhanced predictions

Impacts

- Natural resources
- Hazards risks
- Regional preparedness

Policy Relevance

- Emissions policy
- Preparedness decisions
- National security concerns

Temperature and Heat Waves (Ganguly, 2009)

Worst-Case Projected Per Capita Water Availability by 2100*

Drought Index

Threat and Adaptation

Indian monsoon rainfall extremes: disagreement over trends in literature

Fig. 3. Temporal variation (1951 to 2000) in the number (*N*) of (**A**) heavy ($R \ge 100$ mm/day, bold line) and moderate ($5 \le R < 100$ mm/day, thin line) daily rain events and (**B**) very heavy events ($R \ge 150$ mm/day) during the summer monsoon season over CI. The statistical significance of the trends (dashed lines) was calculated as in Fig. 2.

Goswami et al. 2006: Science

Figure 3. Spatial distribution of 25, 75, 95 and 99 percentile rainfall.

Ghosh et al. 2009: Atmos. Sci. Let.

Contradictory results over many parts of central India

Study 1

0.3

0.2

0.1

0

-0.1

-0.3

0.06

0.04

0.02

0

-0.02

-0.04

EVT - Increasing trends in spatiotemporal variability

Diversity in trends of return levels - more positive than negative contradicts Goswami et al.

Significant increase in spatial variability over time

Predominance of regional > global drivers

Starting Year of 30 Years Time Slices

1950 1955 1960 1965 1970 1975 Starting Year of 30 Years Time Slices

EVT - Increasing trends in spatiotemporal variability (2)

Global climate model selection for regional climate assessment

Recent studies imply overarching benefit of equal-weighted climate model averaging

Monsoon rainfall periodicity: degradation of results with additional models

Not as clear for maximum temperature trends

Process based evaluations of climate models

Q: How do we know if a model gets it right "by chance"?

Going forward

Policy and Science Implications

- Stakeholders may be better off preparing for increasing variability (uncertainty) than increasing trends
- Regional drivers > "global warming" in some cases
- Definitions of extremes can make a difference
- Importance of physical process evaluation in climate model selection

Challenges

- Spatial and temporal resolution differences → conflicting results?
- Adaptation/mitigation in the face of increasing variability
- Importance of physical process evaluation in climate model selection
- Regional prediction?

Thanks to....

Collaborators (these 2 studies)

- Debasish Das (PhD Candidate in CS, Temple University, study 1)
- Subimal Ghosh (Assistant Professor, CEE, IIT-Bombay, studies 1 &2)
- Shih-Chieh Kao (Research Scientist, Environmental Sciences Division, Oak Ridge National Lab, study 1)
- Evan Kodra (GRA, CEE, University of Tennessee, study 2)

PS: We're moving!

- Auroop R. Ganguly → Assoc. Prof., CEE, Northeastern University starting August 31, 2011, auroop@alum.mit.edu
- Evan Kodra & Joshua Tolen → GRAs, CEE, Northeastern University starting September 1, 2011, <u>kodra.e@husky.neu.edu</u>, tolen.j@husky.neu.edu