Climate Change, Urbanization, and the Indian Monsoon Rainfall: Toward Informing Climate Science, Adaptation Decisions, and Mitigation Policies with Data-Guided Methods

Auroop R. Ganguly, PhD
Senior R&D Staff, Oak Ridge National Laboratory
Computational Science and Engineering Division
Oak Ridge Climate Change Science Initiative
Joint Faculty, University of Tennessee at Knoxville
Civil and Environmental Engineering
Industrial and Information Engineering

gangulyar@ornl.gov

Contributors acknowledged on websites:
NSF “Expeditions in Computing”
http://climatechange.cs.umn.edu/
ORNL “Climate Extremes”
http://www.ornl.gov/knowledgediscovery/ClimateExtremes/

PS: We’re moving!
Auroop R. Ganguly → Assoc. Prof., CEE, Northeastern University starting August 31, 2011, auroop@alum.mit.edu
Evan Kodra & Joshua Tolen → GRAs, CEE, Northeastern University starting September 1, 2011, kodra.e@husky.neu.edu, tolen.j@husky.neu.edu
Challenge: translate climate model derived insights to decision and policy tools

Knowledge Discovery & Translation Process

- Multiple Fossil Fuel Emission Storylines
- Multiple Models
- Critical Infrastructures
- Population
- Climate Observations

Database

Data Integration

Data Analytics

New Insights

GIS Visualization & Science for Decision Support

Decision Scales

- Global Models ~62 miles
- Local Models ~e.g., 2.5 miles

Inclusive definition of “Climate extremes”:

1. severe hydrological or weather events or large shifts in regional climate patterns
2. caused or exacerbated by climate change and/or natural climate variability
3. leading to extreme stresses on natural, engineered and human systems

Arguably the largest knowledge gap in climate science relevant for informing adaptation and policy

Knowledge Discovery & Translation Process
Weather Stations/Radar

Observational Data

“Reanalysis” Surrogate Observations – used especially for areas lacking past data

IPCC Global Models:
- 20th century
- 21st century

Regional Models:
- 20th century
- 21st century

Step 1: Multi-Model Evaluation of Climate Extremes
- Compare extremes from models and observations
- Assess uncertainty

Step 2: Data-Guided Prediction and Uncertainty
Example:
- Can better-simulated variables (temperature) enhance predictions and reduce high uncertainty in precipitation extremes?

Step 3: Multi-Scale Assessment
Regional & Decadal / Extremes & Change
- Characterize uncertainty
- Develop assessments for climate extremes

Step 4: Demonstrable End-User Value
a. Threat Assessment
Regional Risk Analyses
What-If? Scenarios
Climate-Energy Connection

b. Readiness Levels
Natural Infrastructures
Built Infrastructures
Human Health Impacts

Model Simulation Data
Climate extremes: *Science, impacts, policy*

- **Science**
 - Extremes characterizations
 - Uncertainty assessments
 - Enhanced predictions

- **Impacts**
 - Natural resources
 - Hazards risks
 - Regional preparedness

- **Policy Relevance**
 - Emissions policy
 - Preparedness decisions
 - National security concerns

Temperature and Heat Waves (Ganguly, 2009)
Indian monsoon rainfall extremes: disagreement over trends in literature

Contradictory results over many parts of central India

Fig. 3. Temporal variation (1951 to 2000) in the number (N) of (A) heavy ($R \geq 100$ mm/day, bold line) and moderate ($5 \leq R < 100$ mm/day, thin line) daily rain events and (B) very heavy events ($R \geq 150$ mm/day) during the summer monsoon season over CI. The statistical significance of the trends (dashed lines) was calculated as in Fig. 2.

EVT - Increasing trends in spatiotemporal variability

Diversity in trends of return levels – more positive than negative – contradicts Goswami et al.

Significant increase in spatial variability over time

Predominance of regional > global drivers
EVT - Increasing trends in spatiotemporal variability (2)

Mean monsoon

- a(i) 7% 4%
- a(ii) 4% 3%

Annual maxima

- b(i) 2% 2%
- b(ii) 1% 2%

30 years return levels

- c(i) 50% 30% 20%
- c(ii) 55% 32% 14%

100 years return levels

- d(i) 45% 30% 21%
- d(ii) 46% 32% 16%

Exceedances above 100 mm/day

- e(i) < 1% 34% 34%
- e(ii) < 1% 38% 38%

Exceedances above 99 percentile

- f(i) 4% 96% 96%
- f(ii) 1% 95% 95%

Percentage of total grid points having increasing trend
Percentage of total grid points having decreasing trend
Percentage of total grid points having no statistically significant trend

Study 1
Global climate model selection for regional climate assessment

Recent studies imply overarching benefit of equal-weighted climate model averaging

Low frequency Indian monsoon behavior

Maximum temperature trends

Study 2
Monsoon rainfall periodicity: degradation of results with additional models

Convergence to a suboptimal hindcast

Multimodel average not better in every case
Not as clear for maximum temperature trends

No clear cut best climate model

One model is clearly suboptimal – why include it?
Process based evaluations of climate models

Q: How do we know if a model gets it right “by chance”?

- Rainfall - clearer
 - Atlantic multi-decadal oscillation (AMO) periodicity 65-70 years
- T-Max
 - Natural climate variability
 1. Teleconnection with climate oscillators
 2. Low frequency variability
 - Anthropogenic global (non-climate) change
 1. Urbanization/Land use change
 2. Non GHG emissions/Aerosol

- Meridional gradient of tropospheric temperature (difference of 200 hPa and 600 hPa temperature between a north [30° E -100° E, 10° N - 35° N] and a south box [30° E -100° E, 15° S - 10° N])
- Temperature anomaly
 - In Eurasia
- All India Monsoon (JJAS) Rainfall (AIMR)
 - Periodicity: 67 years
- All India minimum temperature (MAM) (TMIN)
 - Periodicity: 60 years

Global warming
 - Trend: 0.74°C/century
 Continental (Asia) warming
 - Trend: 1.3°C/century
 Regional (India) warming
 - Trend: 0.68°C/century

Increasing uncertainty

Model skills typically low
 a) in the tropics and
 b) for finer resolution processes
Going forward

Policy and Science Implications

- Stakeholders may be better off preparing for increasing variability (uncertainty) than increasing trends
- Regional drivers > “global warming” in some cases
- Definitions of extremes can make a difference
- Importance of physical process evaluation in climate model selection

Challenges

- Spatial and temporal resolution differences → conflicting results?
- Adaptation/mitigation in the face of increasing variability
- Importance of physical process evaluation in climate model selection
- Regional prediction?
Thanks to....

Collaborators (these 2 studies)

- Debasish Das (PhD Candidate in CS, Temple University, study 1)
- Subimal Ghosh (Assistant Professor, CEE, IIT-Bombay, studies 1 & 2)
- Shih-Chieh Kao (Research Scientist, Environmental Sciences Division, Oak Ridge National Lab, study 1)
- Evan Kodra (GRA, CEE, University of Tennessee, study 2)

PS: We’re moving!

- Auroop R. Ganguly → Assoc. Prof., CEE, Northeastern University starting August 31, 2011, auroop@alum.mit.edu
- Evan Kodra & Joshua Tolen → GRAs, CEE, Northeastern University starting September 1, 2011, kodra.e@husky.neu.edu, tolen.j@husky.neu.edu