
Abdollah Homaifar (PhD)
Duke Energy Eminent Professor
Department of Electrical and Computer Engineering
North Carolina A&T State University
Contributors: Lacewell, Gebril, Buaba, Fetanat  (PhD Students)

Knapp, Khin (NOAA),Obeidat (NCAT)



Visual Image Thermal Image

 “Curse of dimensionality”
 17k/month, approx. 200k/yr , (24 GB/yr)
 About 3.8 million images available (about 0.5 TB) 

Fact: Data is growing rapidly!!!

Location

2.7 km ground sample coverage

Example: DMSP Satellite images

363 x 293 pixels 363 x 293 pixels



Extract the dominant features that can uniquely represent satellite images

Use the extracted features to: 
 track the origin of tropical storm (TS) Debby 2006 MCSs,
 estimate the intensities of  tropical cyclones (TCs), and
 develop an approximate nearest neighbor (NN) algorithm to find similar 

images quickly.



 Feature Extraction
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 Texture is the spatial arrangement of the gray levels of the pixels

 Capturing visual content for indexing & retrieval
 Basic image features:  texture, shape, and color

 Most common techniques for describing texture:
 Gray-Level Co-occurrence Matrix (GLCM) 
 Tamura
 Gabor filtering
 Pyramidal wavelet decomposition

 Texture features are suitable for:
 Satellite images
 Images of documents



GLCM :Statistical measurement of texture
 Pros: Simple, creates a good outline of the object
 Cones: Doesn’t extract the object, must have a known background
Tamura texture feature
 Method for approximating intuitive texture features:

 Coarseness: coarse vs fine
 Directionality: directional vs  non-directional
 Contrast: high contrast vs low contrast
 Regularity: regular vs irregular (periodicity, randomness) 
 Roughness: rough vs smooth

 Pros: Simple, simulates psychological measurement of directionality
 Cones: Does not represent dependencies between pixels



Wavelet Transforms
 Mathematical transformations are applied to signals to obtain a further 

information from that signal that is not readily available in the raw signal. 
 Wavelet-based  processing algorithms

 Ability to discriminate different frequencies and to preserve signal details at 
different resolutions.

 ‘zoom in’ and ‘zoom out’ capability of the wavelet filters which can translate 
themselves to a location of a signal that is of interest

 Pros:
 Multi-scale
 Complete reconstruction
 Edge types
 Resist noise

 Cons:
 Time complexity



Sample Discrete Wavelet Transform Decomposition

Example: DWT



 Both visual and thermal images have 
been reduced from 363x293 to 1x40 
pixels. 

 Further reduced to 1x5 through 
feature selection

 Texture feature vector  per an image            
set is 1x10

 Benefit 
 Reduce memory from 2GB/month to 

1.5 MB/ month

DWT applied to DMSP images



Region of interest: 30oW – 60oE and 5o – 15oNManual: 



 Data fusion
 Image fusion technique (Lacewell et al. 2010)
 Hybrid technique
 Discrete wavelet transform (DWT) 
 Genetic Algorithm (GA)

 Pattern Recognition
 Fuzzy C-Means Clustering (unsupervised technique)
 Feature Extraction and Tracking
 Technique used: Scale and Orientation Adaptive Mean Shift Tracking (SOAMST)  

proposed by Ning et al. (2010)
 Solves problems of estimating the scale and orientation changes of an object
 Based on the area of the object and the second order moments (variance)

Automatic: 



No progress in intensity prediction in the last 2 decades!



Three decades using the Dvorak TC intensity estimation inferring 
manually from cloud patterns and features 

Examples of tropical cyclone patterns and their associated T‐numbers 
(adapted from Dvorak, 1975) 



HURSAT Data

Sample 2006 TC classified by Location



 
  
Saffir–Simpson Hurricane Scale - Wikipedia, the free encycloped  
http://en.wikipedia.org/wiki/Saffir%E2%80%93Simpson_Hurrica  
Screen clipping taken: 7/8/2011 10:47 AM Sample Classification Results (North Atlantic)





Average Classification Accuracy:  71%

Class 0 1 2 3 4 5 
0 142 15 2 0 0 0 
1 35 155 17 5 2 0 
2 5 17 50 10 0 0 
3 5 3 10 47 6 0 
4 11 10 5 11 51 5 
5 2 0 0 0 2 10 

Total 200 200 84 73 61 15 
 

Northern Atlantic storms 1995 – 2005 

Class 0 1 2 3 4 5 

Training data 800 800 336 291 244 60 

Testing data 200 200 84 73 61 15 

Total 1000 1000 420 364 305 75 

 

Number of Training and testing images

Confusion Matrix 



Image Index

Is the intensity of TC stationary?
Consider: “Danielle storm”
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 Error:    e[n] = x[n]-y[n]
 Average absolute error = 14.1472

Linear regression modeling

Image index 



 Average Absolute Error: 4.2485  Average Absolute Error :10.1504
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 In 1D
 Build a data structure by sorting the points in ascending order -ideal
 Complexity:  O(NlogN) 
 Space:  O(N)

 Answer query using Binary search 
 Complexity: O(log2N)

 In 2D
 Build a Veronoi diagram
 Complexity:  
 Space:  

 Answer query using  any planar point location algorithm, e.g. slab decomposition 
[Dokin, Lipton, 1976] ,triangulation refinement , etc
 Complexity: O(logN)

 In d>2
 Complexity, Space  and Query Time grow exponentially!

 ( ) ( )NONO d. ≈50

 ( )δ50 +d.NO



Building a Veronoi Diagram for data in 3D –space  containing N items:
Complexity:       O(N2)
Space :                      O(N2)
Search Complexity:  O(logN)

In practice we deal with higher dimensions ( say d≥10) and N ≥ 1million:
Complexity:            ≥ O(N5)      -Ugh this program is taking too much time
Space : ≥ O(N5)     - Out of memory. 
Search Complexity: ≥ O(logN) 

**Problem:  Space is polynomial in N

Is it possible to build a data structure to simultaneously achieve roughly linear space and 
logarithmic query time?
 kd-trees  (Friedman, Bentley, and Finkel, 1977) : 
Space: O(N)
Search Complexity: O(logN)

 In practice, kd- trees break down for higher dimensions

 LSH ( Motwani, 1998) :
Space: O(dN) O(1)  

Search Complexity: O(dlogO(1)(dN)) 



General Methodology       
Feature Extraction

Data Structure/Search

M best matches

LSH



Hyper-planes => Gaussian  normal distributions

Basic Idea of LSH-> scalar projections
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mLSH

Action # Operations
Match set (2dk +k+2)L
l2-distance (3d-1)αL

Quick-sort O(αL log αL)

LS

Action # Operations
Hashing p into a bin 2dk +k+2

Hashing p onto L tables (2dk+k+2)L

Hashing all samples (2dk+k+2)LN

Creating The Hash Tables

Running A Query

Action # Operations

l2-distance (3d-1)N
Quick-sort O(N log N)

Running A Query

Total:   (2dk+3dα+k+2-α)L + O(αL log αL)

Note:  (i)   αL << N 
(ii)   PDS = (αL/N)*100% 

Gain    =      (3d-1)N + O(N log N)
(2dk+3dα+k+2-α)L + O(αL log αL)

Gain>>1 

Total:    (3d-1)N + O(N log N)
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Dataset size = 439,774



Query Index NNs out of  M Search Time(ms) mLSH  Gain 
Over LS

PDS (%)

mLSH LS mLSH mLSH

5555 50 154.5 17.6 8.79 4.64
64113 50 153.3 6.9 22.22 2.27
99045 45 163.2 1.6 102.95 0.27

101241 41 148.7 2.4 63.26 0.55
135426 50 148.4 9.3 15.89 3.26
165198 50 148.9 4.7 31.37 1.33
264676 50 149.5 3.4 43.39 0.93
276028 49 146.9 3.5 42.16 0.99
339715 50 147.0 11.6 12.69 4.00
429762 48 149.6 6.7 22.45 2.13
Average 48 151.0 6.7 36.52 2.04

Note:  M = 50,   PDS: percentage of database searched (100% for LS)



 Pre-TS Debby (2006) originated over the peak of the Ethiopian Highlands 
 (10oN, 40oE)  on 8/12/15Z

 The K-mean classification performs fairly well for the TC intensity classification

 TCs are non-stationary processes

 mLSH is highly scalable and about 36 times faster than the LS

 Results will be improved and generalized once sufficient data becomes available



 Investigate the applicability of other feature extraction techniques (e.g. Shape)
 Implement a program to determine the probability of a cloud cluster developing 

into a tropical cyclone (TC)
 Develop a statistical technique using histogram and feature attributes to 

accurately detect origin of TCs
 Preprocess all tropical storms (TSs) to eliminate erroneous data
 Investigate temporal behavior of the extracted features as a step toward 

prediction of  future dynamics of a TC
 Use mLSH to index the TCs for faster retrieval
 Validate the stationary or non-stationary nature of all the other TSs
 Improve upon the mLSH by using an optimal hyper-plane for projection
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