

Similarity quantification of climatic images and tropical cyclone tracking and intensity estimation

Abdollah Homaifar (PhD) Duke Energy Eminent Professor Department of Electrical and Computer Engineering North Carolina A&T State University **Contributors: Lacewell, Gebril, Buaba, Fetanat (PhD Students)** Knapp, Khin (NOAA), Obeidat (NCAT)

Fact: Data is growing rapidly!!!

Location

2.7 km ground sample coverage

Visual Image

363 x 293 pixels

- "Curse of dimensionality"
- 17k/month, approx. 200k/yr , (24 GB/yr)
- About 3.8 million images available (about 0.5 TB)

363 x 293 pixels

24 GB/yr) able (about 0.5 TB)

Problem Definition

• Extract the dominant features that can uniquely represent satellite images

- Use the extracted features to:
 - track the origin of tropical storm (TS) Debby 2006 MCSs,
 - estimate the intensities of tropical cyclones (TCs), and
 - develop an approximate nearest neighbor (NN) algorithm to find similar images quickly.

Outline

- Feature Extraction
- Estimation of Tropical Cyclone Intensity
- Similarity Estimation of Climatic Images
- Conclusion
- Future work
- Published Papers
- References

- Texture is the spatial arrangement of the gray levels of the pixels
- Capturing visual content for indexing & retrieval
- Basic image features: texture, shape, and color
- Most common techniques for describing texture:
- Gray-Level Co-occurrence Matrix (GLCM)
- Tamura
- Gabor filtering
- Pyramidal wavelet decomposition
- Texture features are suitable for:
- Satellite images
 - Images of documents

- GLCM : Statistical measurement of texture Þ
 - Pros: Simple, creates a good outline of the object
 - Cones: Doesn't extract the object, must have a known background
- Tamura texture feature Þ
 - Method for approximating intuitive texture features:
 - Coarseness: coarse vs fine
 - ✓ Directionality: directional vs non-directional
 - ✓ Contrast: high contrast vs low contrast
 - Regularity: regular vs irregular (periodicity, randomness)
 - ✓ Roughness: rough vs smooth
 - Pros: Simple, simulates psychological measurement of directionality
 - Cones: Does not represent dependencies between pixels

- Wavelet Transforms
 - Mathematical transformations are applied to signals to obtain a further information from that signal that is not readily available in the raw signal.
 - Wavelet-based processing algorithms
 - ✓ Ability to discriminate different frequencies and to preserve signal details at different resolutions.
 - ✓ 'zoom in' and 'zoom out' capability of the wavelet filters which can translate themselves to a location of a signal that is of interest
 - Pros:
 - ✓ Multi-scale
 - ✓ Complete reconstruction
 - ✓ Edge types
 - ✓ Resist noise
 - Cons:

Time complexity

Example: DWT

Sample Discrete Wavelet Transform Decomposition

- Both visual and thermal images have been reduced from 363x293 to 1x40
- Further reduced to 1x5 through
- Texture feature vector per an image
 - Reduce memory from 2GB/month to 1.5 MB/ month

Tracking of Debby (2006)

Manual:

Region of interest: $30^{\circ}W - 60^{\circ}E$ and $5^{\circ} - 15^{\circ}N$

Tracking of Debby (2006)

Automatic:

- Data fusion
 - Image fusion technique (Lacewell et al. 2010)
 - ✓ Hybrid technique
 - ✓ Discrete wavelet transform (DWT)
 - ✓ Genetic Algorithm (GA)
- Pattern Recognition
 - Fuzzy C-Means Clustering (unsupervised technique)
 - Feature Extraction and Tracking
 - ✓ Technique used: Scale and Orientation Adaptive Mean Shift Tracking (SOAMST) proposed by Ning et al. (2010)
 - Solves problems of estimating the scale and orientation changes of an object
 - Based on the area of the object and the second order moments (variance)

TC Intensity Estimation & Prediction

No progress in intensity prediction in the last 2 decades!

Dvorak Technique

Three decades using the Dvorak TC intensity estimation inferring manually from cloud patterns and features

Examples of tropical cyclone patterns and their associated T-numbers (adapted from Dvorak, 1975)

				TTTDCAT
Product	HURSAI-BI	HURSAI-Basin	HURSAT-GEO	HURSAI-
				AVHRR
Period of record	1983-2005	2004-2005	Part of 2006	None
	1979-current	1979-current	????-current	1979-current
Spatial span	10.5° from storm	Basin wide	10.5° from storm	10.5° from storm
	center for all	$\sim 100^{\circ} \log$	center for GOES-	center for all
	global TCs	~50° lat.	observed TCs	global TCs
Temporal	3 hourly	3 hourly	Varving	Varving (~6
resolution	·		(~30min)	hourly)
Spatial	8km	8km	4km	4km
resolution				
Based on	ISCCP B1	ISCCP B1	GOES full	AVHRR GAC
			resolution data	
Channels	IRWIN (11µm)	IRWIN (11µm)	All GOES	All AVHRR
available	IRWVP (6.7µm)	IRWVP (6.7µm)	channels	channels
	VIS (0.65µm)	VIS (0.65µm)	the set of the first set of	
Calibration ¹	Clim IRWIN.	Clim IRWIN.	Operational	Climate
	ISCCP -	ISCCP -	calibration.	calibrated.
	IRWVP, VIS	IRWVP, VIS		
	Clim IRWVP ²	$Clim IRWVP^2$		
Yearly volume	<6.5	<20	Unknown ⁴	Unknown ⁵
(GB)	(<2)	$(<4.6)^3$		
Uncompressed				
(Comp)				
Format	NetCDF	NetCDF	NetCDF	NetCDF
Current Version	1 (version 2)	Beta	Beta	None
Movies	Available	Planned	None	None

HURSAT Data

Northern Atlantic TAR (301.2MB)	Eastern Pacific TAR (553.4MB)	Western Pacific TAR (962.4MB)	Southern Hemisphere TAR (642.7MB)	Indian Ocean TAR (129.1MB)
ALBERTO (28.1MB) Jun-10 to 19	ALETTA (15.4MB) May-27 to 31	060 (29.2MB) Mar-01 to 07	CLARE (23.8MB) Jan-06 to 10	012 (35.2MB) Jan-12 to 19
198 (8.2MB) Jul-16 to 19	BUD (23.7MB) Jul-11 to 17	CHANCHU (62.1MB) May-07 to 19	TAM (11.8MB) Jan-11 to 14	MALA (28.3MB) Apr-24 to 29
BERYL (9.6MB) Jul-18 to 22	CARLOTTA (31.0MB) Jul-12 to 20	JELAWAT (37.3MB) Jun-22 to 29	URMIL (6.7MB) Jan-13 to 15	182 (14.6MB) Jun-30 to Jul-03
CHRIS (20.0MB) Aug-01 to 06	DANIEL (41.5MB) Jul-16 to 28	EWINIAR (56.5MB) Jun-29 to Jul-10	DARYL (28.9MB) Jan-18 to 23	MUKDA (23.9MB) Sep-19 to 26
DEBBY (28.7MB) Aug-21 to 28	EMILIA (39.8MB) Jul-21 to 31	BILIS (38.4MB) Jul-07 to 14	BOLOETSE (104.2MB) Jan-22 to Feb-06	271 (10.6MB) Sep-28 to 30
ERNESTO (32.5MB) Aug-24 to Sep-04	GILMA (16.8MB) Aug-01 to 05	KAEMI (46.6MB) Jul-17 to 26	JIM (29.4MB) Jan-27 to Feb-02	300 (16.3MB) Oct-27 to 30
FLORENCE (58.1MB) Sep-03 to 19	FABIO (17.0MB) Jul-31 to Aug-05	PRAPIROON (45.3MB) Jul-28 to Aug-05	VAIANU (24.4MB) Feb-10 to 17	
GORDON (50.5MB) Sep-10 to 23	IOKE (87.3MB) Aug-16 to Sep-06	SAOMAI (40.5MB) Aug-04 to 12	049 (37.7MB) Feb-18 to 23	
HELENE (57.0MB) Sep-12 to 27	HECTOR (30.5MB) Aug-15 to 24	MARIA (27.2MB) Aug-03 to 10	KATE (8.0MB) Feb-22 to 24	
ISAAC (8.0MB) Sep-27 to Oct-03	ILEANA (29.7MB) Aug-21 to 29	BOPHA (31.5MB) Aug-05 to 11	CARINA (39.9MB) Feb-22 to Mar-02	
	JOHN (30.4MB) Aug-28 to Sep-04	WUKONG (31.8MB) Aug-12 to 20	EMMA (10.0MB) Feb-26 to 28	
	KRISTY (39.1MB) Aug-30 to Sep-09	SONAMU (15.5MB) Aug-13 to 16	DIWA (53.0MB) Mar-01 to 09	
	LANE (15.6MB) Sep-13 to 17	234 (18.5MB) Aug-22 to 25	LARRY (23.1MB) Mar-16 to 21	

Sample 2006 TC classified by Location

TC Ground Truth Data

Saffir-Si	impson Hurric	ane Scale
Category	Wind speed	Storm surge
	mph	ft
	(km/h)	(m)
Five	≥ 156	> 18
1100	(≥ 250)	(> 5.5)
Four	131–155	13–18
1 Out	(210–249)	(4.0–5.5)
Three	111–130	9–12
iniee	(178–209)	(2.7–3.7)
Two	96–110	6–8
IWO	(154–177)	(1.8–2.4)
0	74–95	4–5
One	(119–153)	(1.2–1.5)

Year Class	2006
0	891
1	223
2	55
3	32
4	0
5	0
Total	1201

Saffir–Simpson Hurricane Scale - Wikipedia, the free encycloped http://en.wikipedia.org/wiki/Saffir%E2%80%93Simpson Hurrica Screen clipping taken: 7/8/2011 10:47 AM

2005	2004	2003
2993	1521	1413
500	204	139
109	162	89
103	155	119
115	150	85
48	51	50
3868	2243	1895

Sample Classification Results (North Atlantic)

TC Intensity Classification

Results using K-mean classification

]	Number o	of Trainin	ng and te	testing images	
Class	0	1	2	3	4
Training data	800	800	336	291	244
Testing data	200	200	84	73	61
Total	1000	1000	420	364	305

Northern Atlantic storms 1995 – 2005

Confusion Matrix

Class	0	1	2	3	4
0	142	15	2	0	0
1	35	155	17	5	2
2	5	17	50	10	0
3	5	3	10	47	6
4	11	10	5	11	51
5	2	0	0	0	2
Total	200	200	84	73	61

Average Classification Accuracy: 71%

5
60
15
75

5
0
0
0
0
5
10
15

Is the intensity of TC stationary?

Consider: "Danielle storm"

Error: e[n] = x[n] - y[n]Average absolute error = 14.1472

Danielle storm...

Piece-wise linear regression modeling

Average Absolute Error: 4.2485

Average Absolute Error :10.1504

Similarity Estimation

In 1D

- Build a data structure by sorting the points in ascending order -ideal
 - \checkmark Complexity: O(NlogN)
 - Space: O(N) \checkmark
- Answer query using Binary search
 - \checkmark Complexity: $O(log_2N)$
- In 2D
 - Build a Veronoi diagram
 - ✓ Complexity: $O(N^{\lceil 0.5d \rceil}) \approx O(N)$
 - ✓ Space: $O(N^{\lceil 0.5d \rceil + \delta})$
 - Answer query using any planar point location algorithm, e.g. slab decomposition [Dokin, Lipton, 1976], triangulation refinement, etc

 \checkmark Complexity: O(logN)

In d>2

Complexity, Space and Query Time grow exponentially!

*****Bottleneck*****

Building a Veronoi Diagram for data in 3D – space containing N items: Þ $O(N^2)$ *Complexity:* $O(N^2)$ Space :

Search Complexity: O(logN)

In practice we deal with higher dimensions (say $d \ge 10$) and $N \ge 1$ million: Þ

Complexity:	$\geq O(N^5)$	-Ugh this program is taking to
Space :	$\geq O(N^5)$	- Out of memory.

Search Complexity: $\geq O(logN)$

**Problem: Space is polynomial in N

Is it possible to build a data structure to simultaneously achieve roughly linear space and Þ logarithmic query time?

kd-trees (Friedman, Bentley, and Finkel, 1977): Space: O(N)Search Complexity: O(logN)

✓ In practice, kd- trees **break down** for higher dimensions

LSH (Motwani, 1998) :

 $O(dN)^{O(1)}$ Space: Search Complexity: $O(dlog^{O(1)}(dN))$

o much time

General Methodology

Feature Extraction

Locality Sensitive Hashing (LSH)

Basic Idea of LSH-> scalar projections

Hyper-planes => Gaussian normal distributions

p: any *d*-dimensional texture feature vector $HF_{j}(\hat{p}) = \left(\sum_{z=1}^{k} \left\lfloor \frac{h_{zj} \bullet \hat{p} + b^{(z)}}{\alpha} \right\rfloor H^{(z)} \right) \mod m + m - 1$ $h_{z,j} \sim N_{gd}(0, d^2)$ $\alpha = N/m$ $b^{(z)} \sim [0, \alpha]$ $H^{(Z)} \sim [0, m]$

N: number of texture feature vectors

q: query texture feature vector M: number of nearest neighbors desired

mLSH

Creating The Hash Tables

Action	# Operations
Hashing <i>p</i> into a bin	2dk +k+2
Hashing p onto L tables	(2dk+k+2)L
Hashing all samples	(2dk+k+2)LN

Running A Query

Action	# Operations
Match set	(2dk +k+2)L
l_2 -distance	(3d-1)αL
Quick-sort	$O(\alpha L \log \alpha L)$

Total: $(2dk+3d\alpha+k+2-\alpha)L + O(\alpha L \log \alpha L)$

 $HF_{j}(\hat{p}) = \left(\sum_{z=1}^{k} \left| \frac{h_{zj}}{z} \right| \right)$

LS

Running A Query

Action	# Operations		
l_2 -distance	(3d-1)N		
Quick-sort	O(N log N)		

Total: $(3d-1)N + O(N \log N)$

(i) $\alpha L \ll N$ (ii) $PDS = (\alpha L/N) * 100\%$

 $(3d-1)N + O(N \log N)$ $2dk+3d\alpha+k+2-\alpha)L + O(\alpha L \log \alpha L)$

$$\frac{\bullet \hat{p} + b^{(z)}}{\alpha} \bigg| H^{(z)} \right) \mod m + m - 1$$

Implementation Platform

Note: $M = 50$, PDS: percentage of database searched (100% for LS)						
Query Index	NNs out of M	Search Time(ms)		mLSH Gain Over LS	PDS (%)	
	mLSH	LS	mLSH		mLSH	
5555	50	154.5	17.6	8.79	4.64	
64113	50	153.3	6.9	22.22	2.27	
99045	45	163.2	1.6	102.95	0.27	
101241	41	148.7	2.4	63.26	0.55	
135426	50	148.4	9.3	15.89	3.26	
165198	50	148.9	4.7	31.37	1.33	
264676	50	149.5	3.4	43.39	0.93	
276028	49	146.9	3.5	42.16	0.99	
339715	50	147.0	11.6	12.69	4.00	
429762	48	149.6	6.7	22.45	2.13	
Average	48	151.0	6.7	36.52	2.04	

Conclusions

- Pre-TS Debby (2006) originated over the peak of the Ethiopian Highlands • $(10^{\circ}N, 40^{\circ}E)$ on 8/12/15Z
- The K-mean classification performs fairly well for the TC intensity classification
- TCs are non-stationary processes
- mLSH is highly scalable and about 36 times faster than the LS
- Results will be improved and generalized once sufficient data becomes available

Future Work

- Investigate the applicability of other feature extraction techniques (e.g. Shape)
- Implement a program to determine the probability of a cloud cluster developing into a tropical cyclone (TC)
- Develop a statistical technique using histogram and feature attributes to accurately detect origin of TCs
- Preprocess all tropical storms (TSs) to eliminate erroneous data
- Investigate temporal behavior of the extracted features as a step toward prediction of future dynamics of a TC
- Use mLSH to index the TCs for faster retrieval
- Validate the stationary or non-stationary nature of all the other TSs
- Improve upon the mLSH by using an optimal hyper-plane for projection

Published Papers

- G. Fetanat, R. Buaba, A. Homaifar, "A New ECG Arrhythmias classification technique based on Locality Sensitive Hashing" Submitted to Digital signal processing, Elsevier, Dec. 2010.
- R. Buaba, M. Gebril, A. Homaifar, E. Kihn, and M. Zhizhin, "Satellite image retrieval using low memory locality sensitive hashing in Euclidean space," Earth Science Informatics 2011, DOI 10.1007/s12145-010-0076-x, vol. 4, pp. 17–28.
- R. Buaba, A. Homaifar, M. Gebril, E. Kihn, "Satellite Image Retrieval Application Using Locality Sensitive Hashing in L₂-Space," 32nd IEEE Aerospace Conference, 2011.
- M. Gebril, R. Buaba, A. Homaifar, E. Kihn "Structural Indexing of Satellite Images Using" Automatic Classification," 32nd IEEE Aerospace Conference, 2011.
- R. Buaba, M. Gebril, A. Homaifar, E. Kihn, and M. Zhizhin, "Locality Sensitive Hashing" for Satellite Images using Texture Feature Vectors," 31st IEEE Aerospace Conference, 2010.
- M. Gebril, R. Buaba, A. Homaifar, E. Kihn, and M. Zhizhin, "Structural Indexing of Satellite Images Using Texture Feature Extraction Retrieval,"31st IEEE Aerospace Conference, 2010.
- C. W. Lacewell, M. Gebril, R. Buaba, and A. Homaifar, "Optimization of Image Fusion Using Genetic Algorithms and Discrete Wavelet Transform," NAECON, 2010.