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The Case for Uncertainty Quantification

UQ enables:

enhanced scientific understanding from computations
exploration of model predictions over range of uncertainty

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models
employing (noisy) data

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction
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Sources of Uncertainty in computational models

Lack of knowledge, and data noise
model structure

participating physical processes
governing equations
constitutive relations

model parameters
transport properties
thermodynamic properties
constitutive relations
rate coefficients

initial and boundary conditions, geometry

numerical errors, bugs

faults, data loss, silent errors
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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Polynomial Chaos (PC) methods

– Collocation methods — sampling — non-intrusive
– Galerkin methods — direct — intrusive
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Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVs)

Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t, ω) ≃
P
∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– ξ(ω) = {ξ1, · · · , ξn} is a vector of standard RVs
– Ψk() are functions orthogonal w.r.t. the density of ξ

with dimension n and order p:

P+ 1 =
(n+ p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of the basis/germ ξ

uk(x, t) =
〈uΨk〉

〈Ψ2
k〉

=
1

〈Ψ2
k〉

∫

u(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ

Examples:

Hermite polynomials with Gaussian basis

Legendre polynomials with Uniform basis, ...

Global versus Local PC methods
– Adaptive domain decomposition of the stochastic

support of u
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Essential Use of PC in UQ

Strategy:

Represent model parameters/solution as random variables

Construct PCEs for uncertain parameters

Evaluate PCEs for model outputs

Advantages:

Computational efficiency

Sensitivity information

Requirement:

Random variables in L2, i.e. with finite variance
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =
P

∑

k=0

ukΨk; λ =
P
∑

k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . ,uP]
T, Λ = [λ0, . . . , λP]

T

Solving this system once provides the full specification of
uncertain model ouputs
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Intrusive PC UQ ODE example

du
dt

= f (u;λ)

λ =

P
∑

i=0

λiΨi u(t) =
P
∑

i=0

ui(t)Ψi

dui

dt
=

〈f (u;λ)Ψi〉
〈

Ψ2
i

〉 i = 0, . . . ,P

Say f (u;λ) = λu, then

dui

dt
=

P
∑

p=0

P
∑

q=0

λpuqCpqi, i = 0, · · · ,P

where the tensor Cpqi = 〈ΨpΨqΨi〉/〈Ψ
2
i 〉 is readily evaluated
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Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based; black-box use of the computational model.
For any model output of interest φ(·;λ(ξ)) =

∑

k φk(·)Ψk(ξ):

φk(·) =
1

〈

Ψ2
k

〉

∫

φ(·;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated numerically using
A variety of (Quasi) Monte Carlo methods
Quadrature/Sparse-Quadrature methods

PC surface
∑

k φk(·)Ψk(ξ) can be fitted using regression or
Bayesian Inference employing computational samples

Discovering/exploiting sparsity via L1-norm minimization
– (Bayesian) compressed sensing

– Use in CESM/CLM4 study in progress
– Lasso
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Challenges in PC UQ – High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}

– number of degrees of freedom
– P+ 1 = (n+ p)!/n!p! grows fast with n

Impacts:
– Size of intrusive system
– # non-intrusive (sparse) quadrature samples

Generally n ≈ number of uncertain parameters

Reduction of n:
– Sensitivity analysis
– Dependencies/correlations among parameters
– Identification of dominant modes in random fields

Karhunen-Loéve, PCA, ...
– ANOVA/HDMR methods
– L1 norm minimization
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Challenges in PC UQ – Non-Linearity

Bifurcative response at critical parameter values
Rayleigh-Bénard convection
Transition to turbulence
Chemical ignition

Discontinuous u(λ(ξ))
Failure of global PCEs in terms of smooth Ψk()
⇔ failure of Fourier series in representing a step function

Local PC methods
Subdivide support of λ(ξ) into regions of smooth u ◦ λ(ξ)
Employ PC with compact support basis on each region
A spectral-element vs. spectral construction
Domain-mapping for arbitrary discontinuity shapes

– Application in climate – AMOC ON/OFF switching
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Challenges in PC UQ – Time Dynamics

Systems with limit-cycle or chaotic dynamics

Large amplification of phase errors over long time horizon

PC order needs to be increased in time to retain accuracy

Time shifting/scaling remedies

Futile to attempt representation of detailed turbulent
velocity field v(x, t;λ(ξ)) as a PCE

– Fast loss of correlation due to energy cascade
– Problem studied in 60’s and 70’s

Focus on flow statistics, e.g. Mean/RMS quantities
Well behaved
Argues for non-intrusive methods with DNS/LES of
turbulent flow
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Estimation of Input/Parametric Uncertainties

Need the joint PDF on the input space
– Published data is frequently inadequate

Bayesian inference can provide the joint PDF
– Requires raw data ... frequently not available

At best: (legacy) nominal parameter values and error bars

Fitting hypothesized PDFs to each parameter
nominals/bounds independently is not a good answer

– Correlations and joint PDF structure can be
crucial to uncertainty in predictions

Bayesian methods that make other available information
explicit in the PDF structure ... “Data-Free" Inference
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Closure

UQ is increasingly important in computational modeling
Probabilistic UQ framework

PC representation of random variables
Utility in forward UQ

– Intrusive PC methods
– Non-intrusive methods

Challenges
– Nonlinearity
– High-dimensionality
– Time dynamics
– Probabilistic characterization of uncertain inputs

UQ is particularly relevant in climate modeling
– consequential predictions
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Outlook

Ongoing research on various fronts
Dimensionality reduction

Sensitivity, PCA, ANOVA/HDMR, low-D manifolds, CS, ...

Discontinuities in high-D spaces
Efficient tiling of high-D spaces

Adaptive anisotropic sparse quadrature

Adaptive sparse tensor representations

Long-time oscillatory dynamics in field variables

Intrusive solvers ... stability, convergence, preconditioning

Methods for characterization of uncertain inputs
Absence of data, dependencies among observations

Model comparison, selection, validation
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