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Phenology and Climate 

• One potential impact of climate change is to change the 
timing of life cycle events (“Phenology”) 
– Bird Migration 
– Moth Flight Times 
– Pollinator Flight Times 
– Timing of leaf-out and flowering 

• What determines the timing of these events? 
– Day length? (will not change with climate) 
– Temperature, precipitation, wind (will change with climate) 

• Phenological asynchrony could lead to major changes in 
food web structure 
– Local extinctions 
– Rapid evolutionary pressures 
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Challenges to Data-Driven Modeling of 
Phenology 

• What we have: periodic observations of organism 
“activity”  
– Moth trap counts 
– Bird surveys 

 

• What we want: timing of life history events 
– When did adult moths emerge from cocoons? 
– When did migrating birds arrive? 

 

• How to bridge the gap? 
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Example: Moth Trap Counts 

What was the flight period of Nepytia umbrosaria in 2004? 
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Example: eBird Data 

 Bird watchers record their observations in a 

database through eBird.org. 

 “Citizen Science” 

 Features 

 LOTS of data! 

 ~3 million observations reported in May 

 ~3,000 bird species 

 Year-round, Continent-scale 
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Challenges 

 We do not directly observe the events we are interested 

in 

 Moth emergence 

 Bird arrival 

 

 Surveys are infrequent 

 May miss “peak” activity 

 

 Naïve approaches don’t use all of the data 

 Date of first moth, first bird 

 Date of maximum abundance 
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A General Approach: Collective Graphical 

Models 
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 Step 1: Define a model of the 
behavior of individual 
organism 

 𝐸𝑖: emergence date for 
organism 𝑖 

 𝐸𝑖~Norm(𝐸𝑖|𝜇, 𝜎) 

 𝑆𝑖 : lifespan 

 𝑆𝑖~Exp(𝑆𝑖|𝜆) 

 𝐹𝑖 : flight period (start, end) 

 start = 𝐸𝑖 

 end = 𝐸𝑖 + 𝑆𝑖 

 𝑇𝑡: trapping date 

 𝑌𝑖𝑡: 1 if moth was trapped on 
date 𝑡, 0 otherwise 

𝐸𝑖 𝑆𝑖 

𝑇1 

𝑌𝑖1 

𝑇2 

𝑌𝑖2 

𝑇3 

𝑌𝑖3 

𝐹𝑖 

𝜇 𝜎 𝜆 
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Step 2: Assume a population of iid 

individuals 
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 We assume all moths 

are drawn from the 

same distribution 𝐸𝑖 𝑆𝑖 

𝑇1 

𝑌𝑖1 

𝑇2 

𝑌𝑖2 

𝑇3 

𝑌𝑖3 

𝐹𝑖 

𝑖 = 1, … , 𝑁 

𝜇 𝜎 𝜆 
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Step 3: Introduce aggregate observation 

variables 
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 𝑌1 =  𝑌𝑖1𝑖  

 𝑌2 =  𝑌2𝑖𝑖  

 𝑌3 =  𝑌3𝑖𝑖  

 

𝐸𝑖 𝑆𝑖 

𝑇1 

𝑌𝑖1 

𝑇2 

𝑌𝑖2 

𝑇3 

𝑌𝑖3 

𝐹𝑖 

𝑖 = 1, … , 𝑁 

𝑌1 𝑌2 𝑌3 

𝜇 𝜎 𝜆 
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Step 4: Marginalize away the individuals 
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 Theorem (Dawid 

& Lauritzen, 1993): 

Resulting graph has 

same dependency 

structure as the 

individual model 

 No combinatorial 

explosion of 

dependencies 

𝑇1 

𝑇2 

𝑇3 

𝑌1 𝑌2 𝑌3 

𝜇 𝜎 𝜆 
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Step 5: Fit via maximum likelihood (etc.) 

ML for Climate 

 Example of fitted model 
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Modeling Climate Dependence 
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 Introduce covariates 

on emergence time 

 Linear regression to 

determine mean and 

variance 

𝑇1 

𝑇2 

𝑇3 

𝑌1 𝑌2 𝑌3 

𝜇 𝜎 𝜆 

degree 
days 

days since 
rainfall 

𝛽 
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CGM for Bird Migration 
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 Define grid over US 

 Aggregate eBird observations into # birds per cell 

B 

A 

Time 

Cell 
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Step 1: Individual Model 
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 Each bird is a sample from a Markov Chain 

 𝑋𝑖𝑡: Cell of bird 𝑖 at time 𝑡 

… 𝑋𝑖1 𝑋𝑖2 𝑋𝑖𝑇 
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Step 2: Population of Individuals 
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… 𝑋𝑖1 𝑋𝑖2 𝑋𝑖𝑇 

𝑖 = 1, … , 𝑁 
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Step 3: Derive Aggregate Counts 
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… 𝑋𝑖1 𝑋𝑖2 𝑋𝑖𝑇 

𝑖 = 1, … , 𝑁 

𝒏1 𝒏2 𝒏𝑇 … true # birds 

in each cell at time 𝑡 

6 Aug 2012 



Step 3b: Introduce Stochastic Observation 

Model 
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 Each bird is detected with probability 𝑑𝑡 by eBirders 

… 𝑋𝑖1 𝑋𝑖2 𝑋𝑖𝑇 

𝑖 = 1, … , 𝑁 

𝒏1 𝒏2 𝒏𝑇 … 

𝒚1 𝒚2 𝒚𝑇 … eBird observations 

in each cell at time 𝑡 

6 Aug 2012 



Step 4: Marginalize away the individuals 

ML for Climate 

𝒏1 𝒏2 𝒏𝑇 … 

𝒚1 𝒚2 𝒚𝑇 … 

𝒏12 𝒏23 
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Step 5: Add climate covariates 

ML for Climate 

𝒏1 𝒏2 𝒏𝑇 … 

𝒚1 𝒚2 𝒚𝑇 … 

𝒏12 𝒏23 

𝒙1 𝒙2 𝒙𝑇 𝒙12 𝒙23 
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Step 6: Fit via maximum likelihood 
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 Very challenging inference problem 

 State = all ways of partitioning 𝑁 birds across 𝐾 sites 

 Solution: Gibbs sampling algorithm that takes time 

independent of 𝑁 
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Gibbs Sampler Experiment 

 Running time on simple GCM task 

 

 

 

 

 

 

 

 

 Running time independent of population size 

 Previous best: exponential 
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(to 2% relative error) 

[Sheldon & Dietterich, NIPS 2011] 

6 Aug 2012 ML for Climate 



New Project: BirdCast 
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 Goal: Continent-wide bird 

migration forecasting 

 Additional data sources: 

 Doppler weather radar 

 Night flight calls 

 Wind observations (assimilated 

to wind forecast model) 



BirdCast Collective Graphical Model: 
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 𝑛𝑡
𝑠(𝑐) = # of birds of species 
𝑠 at cell 𝑐 and time 𝑡. 

 𝑥𝑡
𝑠(𝑖, 𝑜) = eBird count for 

visit 𝑜 at site 𝑖 species 𝑠 and 
time 𝑡 

 𝑦𝑡,𝑡+1
𝑠 (𝑘) = # of flight calls 

for species 𝑠 at site 𝑘 on the 
night (𝑡, 𝑡 + 1) 

 𝑧𝑡,𝑡+1 = # of birds (all 
species) observed at radar 𝑣 
on night 𝑡, 𝑡 + 1  

 

 Occupancy changes each 
night 

 Covariates (not shown): 
wind, precipitation, land 
cover, green up, elevation, 
urbanization 

𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1,… , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
𝑠 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1,… , 𝑂(𝑖, 𝑡) 
𝑠 = 1,… , 𝑆 

𝑖 = 1,… , 𝐿 

𝑠 = 1,… , 𝑆 

𝑘 = 1,… , 𝐾 𝑣 = 1,… , 𝑉 

eBird acoustic radar 
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Concluding Remarks 

ML for Climate 

 Collective Graphical Models provide a formalism for 

modeling phenology from aggregate observations 

 assume a population of iid individuals 

 introduce aggregate observation variables 

 marginalize away individuals 

 fit to data 

 CGM Gibbs sampler has running time independent of 

population size 𝑁 

 we do not yet understand dependence on the number of cells 

𝐾 
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