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e ENSO is often understood as a nonlinear
dynamical system, yet most multivariate analyses
of SSTs are linear

 Upper ocean heat content is considered to be a
carrier of the longer term “ENSO signal”

 Can a nonlinear analysis of the spatially
distributed thermocline depth data enlighten us
as to the space-time evolution of this signal, and
help improve long range prediction?



Thermocline

@ Thermocline Data

@ Derived from a model-based ocean analysis system (Ji et al.,
1995; Ji and Smith, 1995; Behringer et al., 1998)

Tropical Pacific (bounded by 26°N and 28°S)

Period from Jan 1980 to Nov 2007

4541 grid cells (335 months)

Available at

http://iridl.Ideo.columbia.edu/SOURCES /.NOAA / NCEP/.EMC /.CMB /. Pacific/.monthly/.D20eq

@ NINO3 index
@ Kaplan et al. (1998); Reynolds and Smith (1994))

@  http://iridl.Ideo.columbia.edu/SOURCES/.Indices /.nino/.EXTENDED /. NINO3/



http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.Pacific/.monthly/.D20eq/figviewer.html?my.help=&map.T.plotvalue=Jan+1980+-+Oct+2008&map.Y.units=degree_north&map.Y.plotlast=45.5N&map.here.x=204&map.here.y=270&map.url=X+Y+fig-+colors+land+-fig&map.domain=+{+/D20eq+0+200+plotrange+/T+240.5+585.5+plotrange+}&map.domainparam=+/plotaxislength+432+psdef+/plotborder+72+psdef+/XOVY+null+psdef&map.zoom=Zoom&map.Y.plotfirst=35.5S&map.X.plotfirst=121.5E&map.X.units=degree_east&map.X.modulus=360&map.X.plotlast=70.5W&map.D20eq.plotfirst=0&map.D20eq.units=m&map.D20eq.plotlast=200&map.newurl.grid0=X&map.newurl.grid1=Y&map.newurl.land=draw+land&map.newurl.plot=colors&map.plotaxislength=432&map.plotborder=72&map.fnt=Helvetica&map.fntsze=12&map.color_smoothing=1&map.XOVY=auto&map.iftime=25&map.mftime=25&map.fftime=200

PCA, Kernel PCA and Maximum Variance Unfolding

XT = [x1.....x,] = centered matrix of inputs with N points in RV
C=XTX — MxM covariance matrix
U = MxL eigenvector matrix of C

Y=UTXT

LxN matrix of main modes

When M >> N, we can use SVD:

XT =UTVT — Y =3YVT where

V = NxLmatrix of eigenvectors of the Gram matrix G = XXT
2 = Diag. matrix of sq. roots of the top L eigenvectors of G



PCA, Kernel PCA and Maximum Variance Unfolding

If X shows nonlinear behavior: PCA may not lead to reliable results
Possible alternative : seek nonlinear transformations of X so that

feature space is linear. Consider then a feature space 'H and a
nonlinear mapping function &:

d:RM - H
x; — ®(x;), i=1,--- N.

®(x;) can be defined by any nonlinear basis function (e.g.
b(xi) = x7)

Idea: apply PCA in the space defined by ®(X) rather than X:
o(X)T =uzvT



PCA, Kernel PCA and Maximum Variance Unfolding

However, 'H can have a very large dimension depending on & —
not computationally feasible

Solution: Kernel Trick — do not need to compute the mapping

explicitly, but only the dot products, e.g. for ®(w) = w?:

K(w,z) = d(w) - d(z) = (w-z)°
Hence

Kij = ¢(x,]¢(x_,]

Principal components of X are obtained similarly to PCA, but
substituing the Gram matrix G of the original space by the kernel
function K.




PCA, Kernel PCA and Maximum Variance Unfolding

Variants of Kernel PCA: Maximum Variance Unfolding

(Weinberger et al, 2004) and Minimum Volume Embedding (Shaw
and Jebara, 2007).

Question: Given n high dimensional inputs x; € RP,i=1,...,n,
how can we compute outputs y; € 19, where d < p, such that
nearby points remain nearby and distant ones remain distant?

Maximize Trace(K) s.t.:

K ~ 0.

r ;i Ki=0.

K];+K K KI_GII+G G ij-.-
Vi,j — mi=1or [n"n]; > 0.




a) Onginal Data - Spiral
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b) Reduced Dimensional Space - PCA
2
l-. ¢
g8 b .
»
: :
. .
. ot .
[} : ..
[
. "
=1 % =1} [
'I'. o'
_I—I_-".'.. T W, l'..'l..""‘
=2 -1 0 1 2

=1 0 1 2z
¢) Reduced Dimensional Space = MVU
5 N




Thermocline Depth Data

Spatial Structure
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NINO3 Correlations

Series Cross-Correlation Function
a}PCA
: e
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PC1 peak corr lag 0 and MV3 leads by 2 months o O e
PC2 leads by 11 months, MV2 by 20 months — 1st ond ——  3rd

PC3, PC1 paired?, MV1 weak, persistent correlation
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Fi1G. 6. First MV U leading mode (black thick line; scale on the left y axis) and third PC (black thin line;
scale on the right y axis) smoothed by an 18-month filter.

MV1 — thick line

PC3 —think line

Both filtered at 18
months to emphasize
low frequency
variability

Indicative of change
in the baseline state

MV1 carries much
more variance

Kim, Baek-Min, Soon-
Il An, 2011: J.
Climate, 24, 1438-
1450. suggest base
SST increase leads to
period doubling
bifurcation and
amplitude
modulation in ENSO
dynamics



a) NINO3 Time Series
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FI1G. 7. (a) Nino-3 time series and (b) phase plot of the first two MVU components y; and y>. The asterisks indicate the six El Ninc
events (December 1982, December 1987, December 1991, December 1997, December 2002, and December 2006) during the period of
1980-2007. Solid circles denote the phasing 18 months before those El Nino events took place.



Forecast Results

NINO3(t) =
F(NINO3(t—7).;1(t—7) .y (t—7).y3(t—7).o(t—18))+€r, 7<18
F(NINO3(t—7).y1 (t—7).yo(t—7).y5( t—7) ) +€t, 18<r<24

@ Simple linear regression
@ Model selection through 10-fold cross-validation scheme

@ For each lead time 7, one set of predictors that minimizes the

RMSE across all models




Forecast Results

Skill Correlation
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Results are
somewhat
better for
MVU
forecasting
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only NINO3 is
presented
here



Forecast Results

Correlation of Forecasts and Observations as a Function of Start Month and Lead Time
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MVU skill seems to be less dependent on starting month, especially for > 1 year forecasts



Conclusions and Future Research

The nonlinear modes are quite different from the linear modes in
spatial and temporal expression

— though there are similarities, the patterns that explain the most variance
in the field are different

NINO3 prediction in the 1%t year is quite similar for both, though the
MVU based modes do not show differences in predictability starting
from different months for a given lead time of prediction, and hence
do not run into the spring barrier for prediction that the PCA modes
suffer from

NINO3 prediction skill for MVU based predictors in the second year is
consistently superior to that from PCA based predictors.

The recharge-discharge oscillator theory of ENSO appears to be
supported by both analyses. However, the MVU appears to better
separate the different flavors of ENSO, and may also be better at
revealing a pronounced recent trend or shift in ENSO dynamics. These
aspects call for further analytical and theoretical study of ENSO
dynamics.
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