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Climate Change: One of the Most Critical Issues in the 21st Century
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Understanding Climate Change Data

Discovery of Temporal Dependence Relationships

Yan Liu (USC) Sparse-GEV August 6, 2012 3 / 19



Granger Causality

Main Idea: Cause is prior to Effect ⇒ Past values of the cause should help prediction of
the Future values of the Effect.

xt =
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b′lyt−l, (2)

If Eq. (2) is a significantly better model than Eq. (1), we determine that time series y
Granger causes time series x.

Lasso-Granger [Arnold et al, KDD 2007]: To achieve superior accuracy and scalability:
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Challenges in Practical Applications and Theory

Our work to address practical challenges:

• Non-stationary time series [KDD 2009]

• Natural grouping of time series [KDD 2009]

• Spatial time series [KDD 2009]

• Nonlinear time series [AAAI 2010]

• Relational time series [ICML 2010]

• Irregular time series [SDM 2012]

• Extreme-value time series [ICML 2012]

• Hidden variables [Climate Informatics Workshop 2012]

Our work to address theory challenges:

• Granger causality versus true causality [In submission]
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Spatial time series: elastic net [KDD 2009]
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Relational time series: hidden Markov random fields [ICML 2010]
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Motivation

Climate Change: More frequent occurrences of extreme weather

Examples: Minneapolis in 2012

(a) Warm Winter with Little Snow (b) Heatwave
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Problem Definition

The Problem

Given Multiple extreme-valued time series
(
x1:N1:T

)
.

Goal Recover a temporal graph that represents the temporal
dependencies between the time-series.

Challenges

• Heavy tail of the data

• Scarcity of the data
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Sparse-GEV: Gumbel Distribution for the Observations

Proposed Model - Sparse-GEV

p({xit}, {µit}|β,σ, c) =
P∏
i=1

T∏
t=L+1

p(xit|µit, σi)p(µit|{µjt−l},β, c),

We assume a simpler model: ξ → 0. The result is the Gumbel distribution:

G(x|µ, σ) = exp
{
− exp

{
−x− µ

σ

}}
.

Properties of the distribution:

• Connections to Exponential Family

• Heavy Tail (∝ exp(−x/σ))
• Computationally Challenging: Exponential

terms in the log-likelihood
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Sparse-GEV: The Latent Structure for the Parameters

The temporal structure for µit:

µit = f
(
µAll NeighboursLagged

)
+ ε.

In this work, the linear model:

µit = ci +

L∑
`=1

P∑
j=1

βij,`µ
j
t−l + εt

• ci: Location specific bias

• εt: White Gaussian Noise

• βij,`: sparse temporal dependency
parameters.

L
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Inference: EM Algorithm

Maximum Likelihood Solution:

{β̂, σ̂, ĉ} = arg maxL(x1, . . . ,xP ;β,σ, c) +

P∑
i=1

λ‖βi‖1,

Solved via EM Algorithm.

E-Step Expectation computed using Particle Filtering.

M-Step Newton-Raphson for σ and Lasso solvers for β and c.

Prediction
x̂iT+1 = µ̄iT+1 + γEσ

i,

where µ̄iT+1 = ci +
∑L

l=1

∑P
j=1 β

i
j,lµ̄

j
T−l, and γE ≈ 0.5771 is the Euler

constant.
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Experiment Results: Simulation Data

Graph Learning Accuracy (AUC)

Algorithms Avg AUC Score

Sparse-GEV 0.9257
Granger 0.9046
Transfer Entropy 0.8701
Copula 0.8836

Yan Liu (USC) Sparse-GEV August 6, 2012 13 / 19



Experiment Results: Climate Dataset

The temporal dependence graph learned by Sparse-GEV on the extreme
value time series of Wind in NY and Gust in NY. Thicker edges imply
stronger dependency.

Wind Graph:

Pajek

Gust Graph:
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Experiment Results: Prediction Accuracy

Prediction Accuracy (RMSE)

Synth. Wind Gust

Sparse-GEV 0.2644 0.0660 0.0927
Granger 0.2923 0.0695 0.0943
TE 0.3135 0.0692 0.0983
Copula 0.2987 0.0678 0.0934
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Scalability: Parallel Stochastic Optimization Algorithms

• Stochastic Subgradient Langevin Dynamics (SGLD) [Welling & Teh, 2011]:
combining mini-batch stochastic subgradient descent and Langevin Dynamics.

• Parallel Stochastic Coordinate Descent (Shotgun) [Bradley et al, 2011]: a
parallel implementation of Stochastic Coordinate Descent.

• Parallel Stochastic Gradient Descent (PSGD) [Zinkevich et al, 2010]: randomly
partitioning the data, giving one partition to each processor, which sequentially
uses each data point of its own partition to update β using a constant step size η.
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Summary

One Important Task in Climate Change

• Discovery of Temporal Dependence between Extreme Value Time Series

• Sparse Latent GEV Models: an effective and efficient temporal point process
model to capture sparse temporal dependence between extreme value time
series

Yan Liu (USC) Sparse-GEV August 6, 2012 17 / 19



Acknowledgement

Yan Liu (USC) Sparse-GEV August 6, 2012 18 / 19



Thank you!
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