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Climate Change: One of the Most Critical Issues in the 21st Century
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Understanding Climate Change Data

Discovery of Temporal Dependence Relationships
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Granger Causality

Main Idea: Cause is prior to Effect = Past values of the cause should help prediction of
the Future values of the Effect.
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If Eq. (2) is a significantly better model than Eq. (1), we determine that time series y
Granger causes time series .
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Lasso-Granger [Arnold et al, KDD 2007]: To achieve superior accuracy and scalability:
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Challenges in Practical Applications and Theory

Our work to address practical challenges:

Non-stationary time series [KDD 2009]
Natural grouping of time series [KDD 2009]
Spatial time series [KDD 2009]
Nonlinear time series [AAAI 2010]
Relational time series [ICML 2010]
Irregular time series [SDM 2012]
[ICML 2012]
Hidden variables [Climate Informatics Workshop 2012]

Our work to address theory challenges:

Granger causality versus true causality [In submission]
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Spatial time series: elastic net [KDD 2009]
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Variables (Variable group) Type Source ™. o ™. o
Methane (CHy) Greenhouse NOAA . - "
Carbon-Dioxide (CO2) Gases
Hydrogen (Hz) e aw o a
Carbon-Monoxide (CO)
UV (AER) Aerosol Index | NASA
Temperature (TMP) Climate CRU
Temp Range (TMP)
Temp Min (TMP)
Temp Max (TMP)
Precipitation (PRE)
Vapor (VAP)
Cloud Cover (CLD)
Wet Days (WET)
Frost Days (FRS)
Global Horizontal (SOL) Solar NCDC
Direct Normal (SOL) Radiation
Global Extraterrestrial (SOL)
Direct Extraterrestrial (SOL)
I-year return level for Climate Estimated
temperature extreme using temp
(TMPEXT) from CDIAC
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Relational time series: hidden Markov random fields [ICML 2010]
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Motivation

Climate Change: More frequent occurrences of extreme weather

Examples: Minneapolis in 2012

SEASON-TO-DATE MPLS-ST. PAUL SNOWFALL FOR 2011-12 Heat Wave Sets Temp Records Across Minn., Wis.

(BARS) VERSUS LONG-TERM AVERAGE (LINE TRACE) The hest wave baking
| Minnesota and
Wisconsin produced
record-breaking
temperatures across
both states, caused
roads to buckle and led
‘to thunderstorm
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SNOWFALL (IN.)

5 5 warnings in the
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* »® Boundary Waters area,
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30 30 r Temperatures hit 101 in

2 2

2 2 Minneapolis on

15 15 Wednesday, breaking

" » the old record of 100 set
o o on the same day in 1949, according to the National Weather Service. St.

Cloud got up to 97, one degree higher than the record set in 1988.

(a) Warm Winter with Little Snow (b) Heatwave
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Problem Definition

The Problem
. . . . 1:N
Given Multiple extreme-valued time series (217 ).

Goal Recover a temporal graph that represents the temporal
dependencies between the time-series.

Challenges
e Heavy tail of the data
e Scarcity of the data
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Sparse-GEV: Gumbel Distribution for the Observations

Proposed Model - Sparse-GEV
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We assume a simpler model: £ — 0. The result is the Gumbel distribution:

G(x|p, o) :exp{—exp{—:r;'u}}.

Properties of the distribution: - os
® Connections to Exponential Family 015 o
® Heavy Tail (x exp(—z/0)) o1
° Compgtationally .Cha.llenging: Exponential 0o S
terms in the log-likelihood
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Sparse-GEV: The Latent Structure for the Parameters

The temporal structure for pi:
A All Neighbours
pe=f <luLagged ) +e
In this work, the linear model:
L P '
mp=c 4D Bl e
=1 j=1

e ¢ Location specific bias
e ¢;: White Gaussian Noise

° ﬁ;'-gz sparse temporal dependency
parameters.
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Inference: EM Algorithm

Maximum Likelihood Solution:

P
{B,6,¢} = argmax L(z',....a";8,0,¢) + > N|B|1,
=1

Solved via EM Algorithm.

E-Step Expectation computed using Particle Filtering.

M-Step Newton-Raphson for o and Lasso solvers for 3 and c.

Prediction
Ty = Py + VB0
where jif, = c'+ Y1 S8 8L ik, and v & 0.5771 is the Euler

constant.
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Experiment Results: Simulation Data

Graph Learning Accuracy (AUC)
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Ground Truth  Granger causality Transfer entropy  Copula Sparse-GEV
[ Algorithms [ Avg AUC Score ]
Sparse-GEV 0.9257
Granger 0.9046
Transfer Entropy 0.8701
Copula 0.8836
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Experiment Results: Climate Dataset

The temporal dependence graph learned by Sparse-GEV on the extreme
value time series of Wind in NY and Gust in NY. Thicker edges imply
stronger dependency.

Wind Graph: Gust Graph:
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Experiment Results: Prediction Accuracy

Prediction Accuracy (RMSE)

Yan Liu (USC)

Synth. Wind Gust
Sparse-GEV | 0.2644 | 0.0660 | 0.0927
Granger 0.2923 | 0.0695 | 0.0943
TE 0.3135 | 0.0692 | 0.0983
Copula 0.2987 | 0.0678 | 0.0934
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Scalability: Parallel Stochastic Optimization Algorithms

e Stochastic Subgradient Langevin Dynamics (SGLD) [Welling & Teh, 2011]:
combining mini-batch stochastic subgradient descent and Langevin Dynamics.

e Parallel Stochastic Coordinate Descent (Shotgun) [Bradley et al, 2011]: a
parallel implementation of Stochastic Coordinate Descent.

e Parallel Stochastic Gradient Descent (PSGD) [Zinkevich et al, 2010]: randomly
partitioning the data, giving one partition to each processor, which sequentially
uses each data point of its own partition to update 3 using a constant step size 7.
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Summary

One Important Task in Climate Change

e Discovery of Temporal Dependence between Extreme Value Time Series

1 o

e Sparse Latent GEV Models: an effective and efficient temporal point process
model to capture sparse temporal dependence between extreme value time
series
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Thank you!
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