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Climate Models use the equations of motion to simulate changes in

the global phenomena of the atmosphere. General Climate Models

(GCM) describe large scale global motions and have the goal of

describing long term changes in the atmosphere.

Climate Models

1



Climate Models use the equations of motion to simulate changes in

the global phenomena of the atmosphere. General Climate Models

(GCM) describe large scale global motions and have the goal of

describing long term changes in the atmosphere.

Regional Climate Models (RCM) produce a “dynamic downscaling”

of the output of GCMs. They simulate relatively short-term

atmospheric and land-surface processes and the interactions

between the two, at a spatial resolution of about 50 km.
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There are a number of sources of uncertainties related to climate

model assessment:
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There are a number of sources of uncertainties related to climate

model assessment:

• Uncertainty regarding the parameterization of subgrid-scale

processes.

• Uncertainty regarding the initial conditions.

• Uncertainty regarding the structure of the climate model

simulator.

• Uncertainty regarding the historical records.

In this talk we focus on the multi-model uncertainty.

Climate Model Uncertainties
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Denote as F (θ) the output from a computer model depending on

parameter θ. let Y denote a set of observations corresponding to

F (θ).
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Denote as F (θ) the output from a computer model depending on

parameter θ. let Y denote a set of observations corresponding to

F (θ).

The traditional setting for assessment and calibration of a

computer model assumes that both, model and observations

provide information about a true, unobserved quantity, say ξ. Then

Y = ξ + ε, and F (θ) = ξ + δ

where ε is observational error and δ is model discrepancy.
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• Estimation of δ provides an assessment of the model
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• Estimation of δ provides an assessment of the model

• Estimation of θ provides a calibration of the model.

• Estimation of ξ provides information about the property of

interest, using both simulations and observations.
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Is it fair to compare climate model simulations for, say, a given

year to the corresponding observational records?
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Is it fair to compare climate model simulations for, say, a given

year to the corresponding observational records?

A simulation indexed by a given year is not meant to reproduce

that year’s observations. It is just a sample from the climate that is

typical of that year, as estimated by the climate model.

To tackle this issue we can:

• Average over large areas and time spans.

• Consider large scale summaries of the spatial and temporal

fields, i.e. trends, cycles, patterns, indexes.

• Use Space-time models for smoothing.
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NARCCAP Domain

• NARCCAP is a program to

produce high resolution climate

change simulations over the US,

Canada and Mexico.
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NARCCAP Domain

• NARCCAP is a program to

produce high resolution climate

change simulations over the US,

Canada and Mexico.

• The goal is to assess climate

variability at a regional level.

• All RCMs use the same 50 km

resolution and the same future

emission scenario (A2)

Regional Models
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• NARCCAP considers six

different RCMs, four differ-

ent AOGCM, NCEP reanal-

ysis and two time slices. NARCCAP Combinations

AOGCMs

RCMs GFDL HADCM3 CGCM3 CCSM

RegCM3 X X

ECPC X X

PRECIS X X

CRCM X X

WRF X X

MM5 X X
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• NARCCAP considers six

different RCMs, four differ-

ent AOGCM, NCEP reanal-

ysis and two time slices.

• Not every combination of

the RCMs and the AOGCM

are considered, so the exper-

iment resulted in a fractional

factorial design.

• All models consider

present day conditions from

1971 to 2000 and future

simulations 2041 to 2070.

NARCCAP Combinations

AOGCMs

RCMs GFDL HADCM3 CGCM3 CCSM

RegCM3 X X

ECPC X X

PRECIS X X
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• We focus on the Southwest

corner of the US. The gray dots

correspond to the 50 km reso-

lution of the RCMs.
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• We focus on the Southwest

corner of the US. The gray dots

correspond to the 50 km reso-

lution of the RCMs.

• We consider the simulations

obtained using RegCM3 un-

der NCEP, GFDL and CGCM3

forcings.

• We study the variability of

yearly mean summer tempera-

ture at each of the 802 loca-

tions.

The Domain of our Analysis
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• We use NARCCAP simulations of mean summer temperature.

These correspond to three hour periods for 802 grid cells.

Data Description and Processing
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• We use NARCCAP simulations of mean summer temperature.

These correspond to three hour periods for 802 grid cells.

• We used weather station temperature measurements collected by

the NCDC. They are available at three hour intervals for a variable

number of locations, depending on the year, ranging from a min. of

56, to a max. of 262, with a median of 198.

• To obtain interpolated fields we processed 3 hour data by

detrending using location and elevation. We then estimated

exponential variogram parameters with nugget.

• We did a simple kriging of the residuals and then averaged of all

the 3 hourly values.

Data Description and Processing
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• Validate the RCM simulations with respect to the observational

records.

Goals

10



• Validate the RCM simulations with respect to the observational

records.

• Compare the RCM simulations temporally and spatially. A one

way spatio-temporal ANOVA.

Goals

10



• Validate the RCM simulations with respect to the observational

records.

• Compare the RCM simulations temporally and spatially. A one

way spatio-temporal ANOVA.

• Explore trends of spatial and temporal variability that are

common for the four sources of information.

Goals

10



• Validate the RCM simulations with respect to the observational

records.

• Compare the RCM simulations temporally and spatially. A one

way spatio-temporal ANOVA.

• Explore trends of spatial and temporal variability that are

common for the four sources of information.

• Merge the four data sources to obtain blended reconstructions

and forecasts, including probabilistic measures of uncertainty.

Goals
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Observations NCEP
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We use a small number of components to explain the temporal and

spatial variability. This provides computational advantages as well

as estimation of the modes of main spatial variability.

Our Model
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We use a small number of components to explain the temporal and

spatial variability. This provides computational advantages as well

as estimation of the modes of main spatial variability.

All four data sources correspond to a common space-time process.

RCMs deviations from that process are time and space varying.

yt(s) = x
T
t (s)η + ξ(t− t0) + ωt(s)+ +ǫt(s)

yCM
jt (s) = xT

t (s)η
︸ ︷︷ ︸

covariates

+ ξ(t− t0)
︸ ︷︷ ︸

trend

+ ωt(s)
︸ ︷︷ ︸

baseline

+ djt(s)
︸ ︷︷ ︸

discrepancy

+ǫjt(s)

ǫt(s) and ǫjt(s) are observational errors.

Our Model
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The dimensionality of ωt(s) is reduced with a predictive Gaussian

process approach:

ωt(s) =
M∑

m=1

Bm(s)γm,t + ε̃t(s) = B(s)Tγt + ε̃t(s)
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The dimensionality of ωt(s) is reduced with a predictive Gaussian

process approach:

ωt(s) =
M∑

m=1

Bm(s)γm,t + ε̃t(s) = B(s)Tγt + ε̃t(s)

Bm(s) = [v(s)TH−1]m, γt ∼ N(ϕγt−1,H) and

ε̃t(s) ∼ N(0, τ2 − v(s)TH−1v(s)).

v(s) = τ2(ρ(s, s∗1;φ), . . . , ρ(s, s
∗

M ;φ)) and Hlk = τ2ρ(s∗l , s
∗

k;φ).

Dimension Reduction
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γt is a Gaussian process on the set of points {s∗1, . . . , s
∗

M}. Its

correlation function ρ is the Matèrn with parameters φ = (φ1, φ2).
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γt is a Gaussian process on the set of points {s∗1, . . . , s
∗

M}. Its

correlation function ρ is the Matèrn with parameters φ = (φ1, φ2).

ωt(s) is the predictive expectation of γt(s
∗) at location s.

In our application M = 32 and the sites s∗m are located on a

regular grid with a resolution of 290 km.

Dimension Reduction
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Consider the spectral decomposition H = PΛP T , P orthogonal

and Λ diagonal. Let γt = Pαt, ∀t, then

ωt(s) = B(s)TPαt = ψ(s)
Tαt and αt ∼ N(ϕαt−1,Λ).
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16



Consider the spectral decomposition H = PΛP T , P orthogonal

and Λ diagonal. Let γt = Pαt, ∀t, then

ωt(s) = B(s)TPαt = ψ(s)
Tαt and αt ∼ N(ϕαt−1,Λ).

A similar representation for djt yields

ωt(s) + djt(s) = B(s)T (γt + γjt) = ψ(s)
T (αt +αjt),

and

αjt ∼ N(ϕjαj,t−1,Λj).

Time Evolution

16



Consider the spectral decomposition H = PΛP T , P orthogonal

and Λ diagonal. Let γt = Pαt, ∀t, then

ωt(s) = B(s)TPαt = ψ(s)
Tαt and αt ∼ N(ϕαt−1,Λ).

A similar representation for djt yields

ωt(s) + djt(s) = B(s)T (γt + γjt) = ψ(s)
T (αt +αjt),

and

αjt ∼ N(ϕjαj,t−1,Λj).

The fields ψm(s) are not orthogonal, but the corresponding

coefficients are independent with decreasing variance.

Time Evolution
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GFDL CGCM3 NCEP
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We assess our future predictions by taking a training set

(1971–1990) and a test set (1991–2000). We consider:

• Continuous rank probability scores.

• Energy scores

• Root mean square error

• Mean absolute error

Model Assessment
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Forecast CRPS ES RMSE MAE

CGCM3 2.91 108.80 3.98 3.38

GFDL 3.20 115.50 4.17 3.67

Merged 3.01 110.40 4.06 3.51

Observations 0.59 20.15 1.03 0.79

Model 1 (32 knots) 2.19 74.20 3.53 2.95

Model 2 (32 knots) 1.20 42.94 2.14 1.69

Model 2 (68 knots) 1.22 43.72 2.17 1.70

Model Assessment

23



Forecast CRPS ES RMSE MAE

CGCM3 2.91 108.80 3.98 3.38

GFDL 3.20 115.50 4.17 3.67

Merged 3.01 110.40 4.06 3.51

Observations 0.59 20.15 1.03 0.79

Model 1 (32 knots) 2.19 74.20 3.53 2.95

Model 2 (32 knots) 1.20 42.94 2.14 1.69

Model 2 (68 knots) 1.22 43.72 2.17 1.70

All three statistical procedures improve the predictions of the

model runs. The best method is obtained with a coarse grid and

constant discrepancies.

Model Assessment
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Blended GFDL CGCM3
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• We use hierarchical models to compare and blend information

from different climate model simulations and obtain unified

predictions.

Conclusions
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• We use hierarchical models to compare and blend information

from different climate model simulations and obtain unified

predictions.

• Our model provides a quantification of the uncertainties

associated with the predictions.

• We use spatial and temporal models to introduce smoothing in

time and space.

• Our spatial factor model reduces computations and allows for the

description of patterns, cycles and trends that can be used as

summaries of the analysis.

Conclusions
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