Predicting Hurricanes Using Regional Dynamic Models

Lian xie

In collaboration with:

Bin Liu and Shiqiu Peng

Department of Marine, Earth and Atmospheric sciences

North Carolina State University

Second Workshop on Understanding Climate Change from Data

Minneapolis, August 6-7, 2012

Limitations of Numerical Models

• Global model:

- a) insufficient resolution;
- b) huge demand on computational power and storage space;
- c) not practical for real-time weather prediction at the present and in the near future.
- Regional (limited area) model:
 a) insufficient coverage of forcing outside model domain;
 b) ill-defined open boundary condition.

Sensitivity of simulated TC tracks to model domain selection

Improved model physics and resolution, better observations and data assimilation techniques can track forecasts, but ill-posed lateral boundary conditions for limited area models remain a major issue for track forecasting.

Scale-Selective Data Assimilation provides a way to improve model nesting.

Hurricane track forecasts have shown steady improvement but mean error remains approximately 200 km at 48 h (2 days), 500 km at 120 h (5 days)

Source: NOAA/NHC: http://www.nhc.noaa.gov/verification/index.shtml

Intensity forecast presents an even bigger challenge. Historical records show little improvements in intensity forecasts despite the introduction of air-sea coupled models and advanced DA techniques in the last decade

Source: NOAA/NHC: http://www.nhc.noaa.gov/verification/index.shtml

SSDA corrects the simulated track of Hurricane Katrina initialized at 00Z August 26

SSDA cuts the track forecast error for Hurricane Felix of 2007 by 30-50% comparing with GFS or WRF

Improvements in track forecasts by using SSDA are more evident beyond 48 h

 $e = 111.11\cos^{-1} \left[\sin \varphi_o \sin \varphi_f + \cos \varphi_o \cos \varphi_f \cos(\lambda_o - \lambda_f) \right]$

For over 100 simulations, using SSDA led to track forecast improvement in all of the cases

Typhoon Kompasu (2010) presented a major forecast challenge for forecasters. Using SSDA would have avoided the false warning in Shanghai that led to unnecessary school, store and office closures.

Typhoon MEARI(1105号)

`ime (UTC)	Lat	Lon	MinSLP (hPa)	MaxWind	(m/s)
2011-06-24_12:00:00	23.49	125.20	983.3	25.9	30
011-06-24_18:00:00	25.95	124.12	977.9	27.8	30
011-06-25_00:00:00	27.23	123.50	977.6	25.1	30
2011-06-25_06:00:00	28.47	123.28	978.2	23.9	30
2011-06-25_12:00:00	29.58	123.89	979.1	24.0	28
2011-06-25_18:00:00	31. 37	124.21	979.1	24.4	28
2011-06-26_00:00:00	33. 89	124.14	980.1	25.8	25
2011-06-26_06:00:00	36.06	123.45	980.1	25.0	23
2011-06-26_12:00:00	37.47	122.74	980.7	22,8	23

Seasonal Prediction

Control run: 4-month integration of WRF from 00UTC 01 June to 00UTC 29 Sept. 2005

DA - : before performing the last cycle of 3DVAR at 00UTC 29 Sept. 2005

DA + : after performing the last cycle of 3DVAR at 00UTC 29 Sept. 2005

Wind field (large scale at ~ 200mb)

Wind field (combined at ~ 200mb)

Wind field (combined at ~ 500mb)

1990 – 1999 CCSM3 Annual mean wind speed

Mean Absolution Error (MAE) Comparing with 30 Surface Wind Observations: 25%-30% MAE reduction

	CCSNA	SSDA	MAR
ME	14B	127	140
MEtowind	178	135	188
spaces - 6n/s			

Conclusion

SSDA with WRF 3DVAR is a cost-effective alternative to high-resolution global models for regional weather and climate prediction and downscaling.

For more information visit: http://cfdl.meas.ncsu.edu/