Summary of Related Research Work at
North Carolina A&T State University

Abdollah (Abbie) Homaifar (Ph.D.)

Duke Energy Eminent Professor and
Director, Autonomous Control and
Information Technology Center (ACIT)
Office: 336-285-3709
Fax: 336-334-7716
Website: http://acitcenter.ncat.edu
ACIT Center Research
Team Members/Collaborators

Dr. Abdollah Homaifar (NCAT)
Dr. Ruben Buaba (NCAT)
Dr. Gholamreza Fetanat (NCAT)
Chaunte Lacewell (Ph.D. student, NCAT)
M. Gorji-Sefidmazgi (Ph.D. student, NCAT)
Muhammad Sohail (Undergrad, NCAT)
Dr. Yuh-Lang Lin (NCAT)
Dr. Manoj Jha (NCAT)
Sayemuzzaman Mohammad (Ph.D. student, NCAT)
Dr. Eric Kihn (NOAA/NGDC)
Dr. Ken Knapp (NOAA/NCDC)
Dr. Alok Choudhary (NU)
Dr. William Hendrix (NU)
Dr. Stefan Liess (UMN)

Website: http://acitcenter.ncat.edu
Overview

Selected Research Areas
- Data mining
- Machine Learning
- Search Algorithms
- Modeling/Prediction

Outline
- Tracking of cloud clusters developing into tropical cyclones
- Objective tropical cyclone intensity estimation using satellite Images
- Nearest Neighbor Search in Large High-Dimensional Dataset
- Analyzing climatic time series, low frequency variability of climate
Forecasters need new techniques using pattern recognition to determine whether a tropical cyclone (TC) will develop from a loosely organized cluster of clouds.

Refined observational data and forecasting techniques are not always available or accurate in areas in which data is sparse such as western North Africa.

Prior studies have attempted to predict tropical cyclogenesis (TCG) using numerical weather prediction models and radar data.

Global gridded satellite data are used and are readily available when advanced data are not available.
Methodology

- Extract information
 - Objectively identify and track individual CCs
 - Determine relevant features

- Classify information
 - Evaluate data
 - Classify developing (D) and non-developing (ND) CCs

Flowchart
Methodology…

- **Identification of CCs**
 - Brightness Temperature (BT) threshold (245 K)
 - Radius of at least 1° (111 km)
 - CC area of at least 2,400 km2
 - Other features extracted such as geometric center, weighted center, min. BT location, average sea surface temperature, eccentricity, etc.

- **Tracking of CCs**
 - Incorporates both area overlap and detect and spread methods
 - Method is able to track splitting, merging, and continuance of CCs
 - Uses a reward incorporating distance between CCs and overlapping area to determine track decisions
Results/Conclusion

- No “ground truth” data to verify identified and tracked CCs
 - Use Hurricane Satellite (HURSAT) data to analyze the usefulness of tracking technique
 - Method provides reasonable results when compared to actual tracks, which are completed by experts

HURSAT center (blue), geometric center (red), weighted center (green), and minimum Brightness temperature location (magenta) of Hurricane Cindy (1999)
Objective Tropical Cyclone Intensity Estimation using Satellite Images

Introduction

- Developing an objective method that provides quick and accurate Tropical Cyclone intensity estimation using satellite images
- A TC is a storm system characterized by large air masses circulating clockwise or counterclockwise
- The intensity of a TC is measured by the minimum sea level pressure (MSLP-mb) or surface maximum sustained wind speed (MSW-kt), which is defined as the one-minute wind speed average

Approach Description
(Image Analysis)

- **Features:** (*current* and the preceding 6, 12, 24 hours’ images)
 - Images are described based on BTs mean and SD of the selected image rings (14 consecutive rings from the center of the storm) are used for comparison
 - Dimension: \((4 \times 2 \times 14 = 112)\) attributes
 - \((301 \times 301)\) image described by 112 features

\[
INT = f(g(x, y)_t, g(x, y)_{t-6}, g(x, y)_{t-12}, g(x, y)_{t-24})
\]
Methodology

Feature Analogs in Satellite Imagery (FASI)
Results/ Conclusion

- RMSE: 4.6 knots compared to 11.7 knots by DT
- 50% of the estimates have MAE less than 2.4 knots, 75% are within 4.4 knots and 90% are within 7.5 knots
- The accuracy is competitive when compared to other objective methods (e.g. advanced Dvorak technique)
- Simplicity, objectivity and consistency of the proposed approach makes it an important tool for estimating the intensity of TCs compare to subjective DT
- Proposed technique very suitable for Hurricane Category 1-3
- Overall, 30% to 55% improvement achieved compared to the DT
Nearest Neighbor Search in Large High-Dimensional Dataset

Motivation

- “Big Data”
 - Data is growing rapidly!!
 - 2.5 quintillion (2.5×10^{18}) bytes of technological data created per day worldwide (per-capita)
 - 90% of the world’s data has been created in the last two years alone
 - Computers are not catching up
 - Faster computing technique is crucial
 - Algorithms must be able to run on PC
 - Faster Information Retrieval is crucial
 - Saves lives, property, money, time, etc.

- Areas Affected
 - Government
 - In 2012, the Obama administration announced the Big Data Research and Development Initiative
 - Science and Research
 - Decoding the human genome originally took 10 years to process; now it can be achieved in one week
 - Private Sector
 - Walmart: more than 1 million customer transactions every hour (~2.5 petabytes of data)
 - Facebook handles about 40 billion photos from its user database
 - Falcon Credit Card Fraud Detection System protects 2.1 billion active accounts world-wide
Problem Formulation

Techniques

- Data structures
 - Nearest Neighbor Search
 - Scalable Algorithms
 - Trees
 - Locality Sensitive Hashing (LSH)
 - Small Binary Codes
Fast Locality Sensitive Hashing

Basic Concept

Dataset

\[P \]

\[T_1 : \ldots : T_L \]

\[\alpha \]

\[\text{Bin}_0, \text{Bin}_1, \ldots, \text{Bin}_{m-1} \]

\[q \in P \]

Similar points:

\[U\{T_1\text{Bin}_0, T_2\text{Bin}_1, T_3\text{Bin}_0, T_4\text{Bin}_3\} = \{ \quad \} \]
Sample Dataset (1.6 million)

DMSP Satellite images

- Location
- Visual image
- Thermal image

2.7 km ground sample distance

363 x 293 pixels

“Curse of dimensionality”

17k/month, approx. 200k/yr, (24 GB/yr)

About 3.8 million images available (about 0.5 TB)

DMSP: Defense Meteorological Satellite Program
Developed Simulation Interface

Download @:
http://acitcenter.ncat.edu/resources.html

SIBRA: Satellite Image Based Retrieval Application
Results/Conclusion

NUMERICAL

PERCENTILE

LS: Linear Search
E2LSH: Exact Euclidean LSH (MIT)
LSH: Locality Sensitive Hashing

Pros:
- FLSH is twice as fast
- FLSH cuts computational complexity by 50%
- FLSH cuts memory complexity by 50%
Analyzing Temperature Regime/Trends During 1950-2010 in North Carolina

Introduction

- Historical climate analysis is important to analyze and has societal, environmental and economical impact
- Analyzing spatiotemporal pattern in climate change across NC

Physical Process (Climate)

\[\dot{x} = f(x, u) \]

Time Series

Understand some information about the climate

Mohammad Gorji-Sefidmazgi (Ph.D. student)
Regime Analysis for Climatic Time Series

- Regimes in the time series are hidden

- Time series is stationary in each regime (Local Stationarity)

- Time series is not locally stationary

- Time series clustering leads to low-frequency variability of climate

- Conventional clustering based on Hidden Markov Model and Gaussian Mixture Model

- Problem is more challenging Developed new clustering method based on Finite Element
Linear trend analysis is common in climate literature

Combining trend analysis and time series clustering

Find climatic variables are rising or falling

Find period of times when climatic variables are rising or falling

For each regime, assume the model of the time series

\[x(t) = \theta_0 + \theta_1 t + \text{noise} \]

Is not locally stationary

Goal is to find switching times between unknown number of regimes
- Average temperature data gathered from 249 stations across North Carolina during 1950-2010
- Needs some pre-processing includes filling missing data and remove seasonality
- FEM finds regimes and trends at the same times. It also help us estimate optimal number of regimes.
- The trends are compared with important climatic indices, it
Results/Conclusion

Spatial distribution of trends in six regimes

<table>
<thead>
<tr>
<th>Regime</th>
<th>Length</th>
<th>Average trend in NC (°C per month)</th>
<th>Average temperature change in NC (°C)</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime 1</td>
<td>1950 – 1965</td>
<td>-0.0077</td>
<td>-1.42</td>
<td>-9.80</td>
</tr>
<tr>
<td>Regime 2</td>
<td>1965 – 1976</td>
<td>0.0107</td>
<td>1.34</td>
<td>9.10</td>
</tr>
<tr>
<td>Regime 3</td>
<td>1976 – 1990</td>
<td>0.0047</td>
<td>0.83</td>
<td>5.81</td>
</tr>
<tr>
<td>Regime 4</td>
<td>1990-1998</td>
<td>-0.0133</td>
<td>-1.20</td>
<td>-8.03</td>
</tr>
<tr>
<td>Regime 5</td>
<td>1998-2005</td>
<td>-0.0005</td>
<td>-0.05</td>
<td>-0.32</td>
</tr>
<tr>
<td>Regime 6</td>
<td>2005-2010</td>
<td>0.0011</td>
<td>0.06</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Future Work

- Develop the image search algorithm into a web application
- Improve the algorithm for tracking the loosely cloud clusters that develop into TCs and develop CC classification algorithms
- FASI is in the process of transitioning to the operational phase (John Knaff will assist)
- Use data from the entire US or N America to investigate the usefulness of the proposed Finite Elements Methods for Time Series Clustering
Posters

- Tracking of Cloud Clusters Developing Into Tropical Cyclones

- Objective Tropical Cyclone Intensity Estimation using Satellite Images

- Nearest Neighbor Search in Large High-Dimensional Dataset

- Analyzing Temperature Regime/Trends During 1950-2010 in North Carolina

- Tracking Hurricane Eye Using Rotational Invariant Features
Recent Publications (2013)

Recent Publications (2013) (submitted)…

Thank You!!!