Probabilistic Graphical Models for Climate Data Analysis

Arindam Banerjee
banerjee@cs.umn.edu

Dept of Computer Science & Engineering
University of Minnesota, Twin Cities

Aug 15, 2013
Climate Data Analysis

• Key Challenges
 – High-dimensional dependent data, small sample size
 – Spatial and temporal dependencies, temporal lags
 – Oscillations with frequency and phase variations
 – Important variables are unreliable, e.g., precipitation
 – Several others: Nonlinearity, heavy tails, …

• Potential Opportunities
 – Multi-model ensembles: Regional skills vs global performance
 – Statistical Downscaling: Coarse to fine scale, capture dependencies
 – Understanding tails: Extreme precipitation, mega-droughts, heat waves, etc.
 – Understanding dependencies: Statistical dependencies, not correlation
 – Several others: Predictive modeling, uncertainty quantification, …

Source: Overpeck et al., Science, (2011)
Graphical Models

- **Graphical models**
 - Dependencies between (random) variables, avoid I.I.D. assumptions
 - Closer to reality, learning/inference is much more difficult

- **Basic nomenclature**
 - Node = Random Variable, Edge = Statistical Dependency

- **Directed Graphs**
 - A directed graph between random variables
 - Example: Bayesian networks, Hidden Markov Models
 - Joint distribution is a product of \(P(\text{child}|\text{parents}) \)

- **Undirected Graphs**
 - An undirected graph between random variables
 - Example: Markov/Conditional random fields
 - Joint distribution in terms of potential functions
Graphical Models: Key Problems

- **Structure Learning**
 - Given: Samples
 - Problem: Learn the Structure

- **Parameter Estimation**
 - Given: Samples and Structure
 - Problem: Estimate Parameters

- **Inference**
 - Given: Structure, Parameters, and some variables (part of a Sample)
 - Problem: Find other variables (part of a Sample)
Global Climate Models (GCMs)
Combining GCM Outputs

• Several ways to combine the model outputs
 – **Average:** Equal weightage to all models (IPCC AR4 2007, Reifen and Toumi 2009)
 – **Superensemble:** Least Squares (Krishnamurti et al., 2002)
 – **REA:** Reliability based ensemble averaging (Giorgi et al., 2002)
 – **Bayesian:** Probabilistic estimates of climate variables (Tebaldi et al., 2005, Smith et al., 2011)
 – **Online Learning:** Tracking climate models (Monteleoni et al., 2011)

• Our work
 – **Hypothesis:** Certain models do well in certain climatic conditions
 – **Goal:** Climate model combination
 • Different weights at different locations
 • Similar climatic conditions should get similar weights
 – Builds on superensemble and probabilistic approaches
Smooth Model Combination (SMC)

Prior to ensure smoothness

\[\theta_j \sim N(0, A^{-1}) \]

Sparse precision matrix \(A = \Sigma^{-1} \)

\[p(\theta_j | A^{-1}) \propto \exp \left(- \theta_j^T A \theta_j \right) \approx \]

\[\min_{\theta_i} \frac{1}{2} \left\| X_i \theta_i - y_i \right\|_2^2 \]

\[\min_\Theta \frac{1}{2} \sum_{i \in V} \left\| X_i \theta_i - y_i \right\|_2^2 + \frac{\lambda}{2} Tr(\Theta A \Theta^T) \]
SMC: Error Term

$$\min_{\Theta} \frac{1}{2} \sum_{i \in V} \|X_i \theta_i - y_i\|^2 + \frac{\lambda}{2} Tr(\Theta L \Theta^T)$$

Error term updates locally
SMC: Smoothness Term

$$\min_{\Theta} \frac{1}{2} \sum_{i \in V} \|X_i \theta_i - y_i\|_2^2 + \frac{\lambda}{2} \text{Tr}(\Theta L \Theta^T)$$

Smoothness term updates based on neighborhoods
SMC: Graphical Model Perspective

- Generative Model

 Prior on rows: $\theta_j \sim N(0, A^{-1})$

 Conditional: $y_i \sim N(X_i \theta_i, \sigma^2)$

- Precision matrix specification

 - Gaussian Markov random field (GMRF)

 - Precision $A = L = D - W$, the discrete graph Laplacian

 - Intrinsic Conditionally Autoregressive Model (ICAR)

 - Spatial statistics literature (Diggle et al., 1998, Besag et al., 1995, Banerjee et al., 2004, Rue et al., 2005)

- Estimation of precision matrix

 - Estimate which locations are ‘similar’

 - Estimated precision is full rank but sparse
Data Set and Methodology

<table>
<thead>
<tr>
<th>GCM</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCCR_BCM2</td>
<td>Bjerknes Centre for Climate Research, Norway</td>
</tr>
<tr>
<td>CCMA_CGCM3</td>
<td>Canadian Centre for Climate Modelling and Analysis, Canada</td>
</tr>
<tr>
<td>MICRO3-2-Hires</td>
<td>Center for Climate System Research, Univ. of Tokyo, Japan</td>
</tr>
<tr>
<td>CNRM_CM3</td>
<td>Center for National Weather Research, France</td>
</tr>
<tr>
<td>GFDL_CM2.1</td>
<td>Geophysical Fluid Dynamics Laboratory, USA</td>
</tr>
<tr>
<td>GISS_E_H</td>
<td>Goddard Institute for Space Studies, USA</td>
</tr>
<tr>
<td>INGV_ECHAM4</td>
<td>European Center for Medium-Range Weather Forecasts, UK</td>
</tr>
<tr>
<td>IPSL</td>
<td>Institut Pierre Simon Laplace, France</td>
</tr>
</tbody>
</table>

- **GCM output**: Monthly average surface temperature
- **Target variable**: Temperature from Climatic Research Unit (CRU)
- **Error/accuracy measures**: RMSE and MAE
- **Smoothness measures**:
 - Kendall \(\tau\)
 - Spearman \(\rho\)
SMC has lower compared to AVE: lower by ~ 0.5°C

Errors (visibly) reduced in many regions
- Africa, Greenland, Southeast Asia, Siberia

High errors in some regions
- Northern Europe/Russia, China/Tibet, West South America, North America
Error vs Smoothness
Mega-Droughts

- **Mega-Droughts**
 - Persistent over space and time
 - Catastrophic consequences

- **Examples**
 - Late 1906s Sahel drought
 - 1930s North American Dust Bowl

- **Discrete Markov Random Field (MRF)**
 - Each node x_i is “wet” or “dry”
 - Observations: Precipitation
 - Smoothness in space and time
 - Most likely state assignments
 - Each (lat,long,time) gets “wet” or “dry”
 - Advanced analysis
 - Soil moisture, hydrology/watershed models
 - Multiple states based on severity, e.g., lower quantiles
Results: Droughts starting in 1920-30s

- Drought in central Canada in the 1920s
- Drought in northwest America in the 1920s
- The Dustbowl in the 1930s
- Drought in Eastern China in the 1920s
- Drought in southern Africa in the 1920s
Results: Droughts starting in 1960-70s

- The prolonged drought in Sahel in the 1970s
- Drought in India and Bangladesh in the 1960s
Major Droughts: 1901-2006
Learning dependencies

Dependencies in graphical models
- \(a_{ij} = 0 \iff x_i \perp x_j \mid x_{-i,-j} \)
- Example: \(x_0 \mid x_5 \perp x_1, x_2, x_3, x_4, x_6, x_7 \)
- Conditional independence

Gaussian model \(x \sim N(0, \Sigma) \)
- Precision \(A = \Sigma^{-1} \) is sparse
- \(p(x|0, A^{-1}) \propto \exp \left(-\sum_{i,j} a_{ij} x_i x_j \right) \)
- \(a_{ij} = 0 \iff x_i \perp x_j \mid x_{-i,-j} \)

Estimating dependency structure
- One-vs-rest ‘sparse regression’
- Lasso for multivariate Gaussians
 \[
 \sum_{h=1}^{n} (y_h - \beta^T x_h)^2 + \lambda_n |\beta|_1
 \]
 \(y = x_0, \quad z = (x_1, \ldots, x_7) \)
Gaussian Copula: \((f_1(x_1), \ldots, f_i(x_i), \ldots, f_p(x_p)) \sim N(0, \Sigma) \), precision \(A = \Sigma^{-1} \)

- Not \((x_1, \ldots, x_i, \ldots, x_p) \sim N(0, \Sigma) \), \(f_i \) are monotonic transformations
- Sparse \(A \) can be consistently estimated (H. Liu et al., 2012)
- Linear Programming (LP) based estimator (CLIME) (T. Cai et al., 2011)
- LP estimator scales to high-dimensional copulas (Our work)
 - Millions of variables, trillions of edges

Source: Delsole et al., 2002, 2006, 2009
• K. Subbian and A. Banerjee, Climate Multi-model Regression Using Spatial Smoothing, *SIAM Data Mining (SDM)*, 2013. [Best Application Paper Award]

• Q. Fu, H. Wang, and A. Banerjee, Bethe-ADMM for Tree Decomposition based Parallel MAP inference, *Uncertainty in Artificial Intelligence (UAI)*, 2013.

• S. Chatterjee, K. Steinhaeuser, A. Banerjee, S. Chatterjee, and A. Ganguly, Sparse Group Lasso: Consistency and Climate Applications, *SIAM Data Mining (SDM)*, 2012. [Best Student Paper Award]