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Climate Data Analysis 

Source: Overpeck et al., Science, (2011) 

• Key Challenges 

– High-dimensional dependent data, small sample size 

– Spatial and temporal dependencies, temporal lags 

– Oscillations with frequency and phase variations 

– Important variables are unreliable, e.g., precipitation 

– Several others: Nonlinearity, heavy tails, … 

• Potential Opportunities 

– Multi-model ensembles: Regional skills vs global performance 

– Statistical Downscaling: Coarse to fine scale, capture dependencies 

– Understanding tails: Extreme precipitation, mega-droughts, heat waves, etc. 

– Understanding dependencies: Statistical dependencies, not correlation 

– Several others: Predictive modeling, uncertainty quantification, … 
 

 
 

  



Graphical Models   

• Graphical models 

– Dependencies between (random) variables, avoid I.I.D. assumptions 

– Closer to reality,  learning/inference is much more difficult 

• Basic nomenclature 

– Node = Random Variable, Edge = Statistical Dependency 

• Directed Graphs 

– A directed graph between random variables 

– Example: Bayesian networks, Hidden Markov Models 

– Joint distribution is a product of P(child|parents) 

• Undirected Graphs 

– An undirected graph between random variables 

– Example: Markov/Conditional random fields 

– Joint distribution in terms of potential functions 
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Graphical Models: Key Problems 

• Structure Learning 

o Given: Samples 

o Problem: Learn the Structure 

 

• Parameter Estimation 

o Given: Samples and Structure 

o Problem: Estimate Parameters 

 

• Inference 

o Given: Structure, Parameters, and some variables (part of a Sample) 

o Problem: Find other variables (part of a Sample) 
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Global Climate Models (GCMs) 

Source: SCIDAC 

Source: UCAR/NCAR 



• Several ways to combine the model outputs 

– Average: Equal weightage to all models (IPCC AR4 2007, Reifen and Toumi 

2009) 

– Superensemble: Least Squares (Krishnamurti et al., 2002) 

– REA: Reliability based ensemble averaging (Giorgi et al., 2002) 

– Bayesian: Probabilistic estimates of climate variables (Tebaldi et al., 2005, 

Smith et al., 2011) 

– Online Learning: Tracking climate models (Monteleoni et al., 2011) 

• Our work 

– Hypothesis: Certain models do well in certain climatic conditions 

– Goal: Climate model combination 

• Different weighs at different locations 

• Similar climatic conditions should get similar weights 

– Builds on superensemble and probabilistic approaches 
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Combining GCM Outputs 
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Smooth Model Combination (SMC) 
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GCM output 
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Prior to ensure smoothness 

θ𝑗 ~ 𝑁 0,A
−1  

Sparse precision matrix A = Σ-1  
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SMC: Error Term 

Error term updates locally 
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• Generative Model 

 Prior on rows: θj ~ N(0,A-1) 

 Conditional:    yi ~ N(Xi θi , σ
2) 

• Precision matrix specification 

– Gaussian Markov random field (GMRF) 

– Precision 𝐴 = 𝐿 = 𝐷 −𝑊, the discrete graph Laplacian 

– Intrinsic Conditionally Autoregressive Model (ICAR) 

– Spatial statistics literature (Diggle et al., 1998, Besag et al., 1995, Banerjee et 

al.,  2004, Rue et al., 2005) 

• Estimation of precision matrix  

– Estimate which locations are ‘similar’ 

– Estimated precision is full rank but sparse 
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SMC: Graphical Model Perspective 
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• GCM output: Monthly average surface temperature 

• Target variable: Temperature from Climatic Research Unit (CRU) 

• Error/accuracy measures: RMSE and MAE 

• Smoothness measures: 

– Kendall τ 

– Spearman ρ 

Data Set and Methodology 
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• SMC has lower compared to AVE: lower by ~ 0.5⁰C 

• Errors (visibly) reduced in many regions 

– Africa, Greenland, Southeast Asia, Siberia 

• High errors in some regions 

– Northern Europe/Russia, China/Tibet, West South America, North America 

 

AVE 

Spatial Error Profile: AVE vs SMC 

SMC 
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Error vs Smoothness 

SMC 



Mega-Droughts 

• Mega-Droughts 

– Persistent over space and time 

– Catastrophic consequences 

• Examples 

– Late 1906s Sahel drought 

– 1930s North American Dust Bowl 

• Discrete Markov Random Field (MRF) 

– Each node xi is “wet” or “dry” 

– Observations: Precipitation 

– Smoothness in space and time 

– Most likely state assignments 

• Each (lat,long,time) gets “wet” or “dry” 

– Advanced analysis 

• Soil moisture, hydrology/watershed models 

• Multiple states based on severity, e.g., lower quantiles 
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Results: Droughts starting in 1920-30s 

Drought in northwest 

America in the 1920s 

Drought in central 

Canada in the 1920s 

 The Dustbowl in the 1930s 

Drought in southern 

Africa in the 1920s 

Drought in Eastern 

China in the 1920s 



Results: Droughts starting in 1960-70s  

The prolonged drought 

in Sahel in the 1970s 

Drought in India and 

Bangladesh in the 1960s 



Major Droughts: 1901-2006 
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Learning dependencies 
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Dependencies in graphical models  

• 𝑎𝑖𝑗 = 0  𝑥𝑖 ⊥ 𝑥𝑗 | 𝑥−i,−j 

• Example: x0 | x5 ⊥ x1,x2,x3,x4,x6,x7 

• Conditional independence 

Gaussian model x ~ N(0,Σ)  

• Precision A = Σ-1 is sparse 

p x 0,A−1 ∝ exp − 𝑎𝑖𝑗 𝑥𝑖 𝑥𝑗

𝑖,𝑗

 

• 𝑎𝑖𝑗 = 0  𝑥𝑖 ⊥ 𝑥𝑗 | 𝑥−i,−j 

Estimating dependency structure 

• One-vs-rest ‘sparse regression’ 

• Lasso for multivariate Gaussians 

 𝑦ℎ − β
𝑇𝑥ℎ
2+ λ𝑛|β|1

𝑛

ℎ=1

 

𝑦 = 𝑥0, 𝑧 = (𝑥1, … , 𝑥7) 
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Sparse Regression, Structure Learning 
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Gaussian Copula: (f1(x1),…,fi(xi),…,fp(xp)) ~ N(0, Σ), precision A = Σ-1 

• Not (x1,…,xi,…,xp) ~ N(0, Σ), fi are monotonic transformations 

• Sparse A can be consistently estimated (H. Liu et al., 2012) 

• Linear Programming (LP) based estimator (CLIME) (T. Cai et al., 2011) 

• LP estimator scales to high-dimensional copulas (Our work) 

• Millions of variables, trillions of edges  

Source:  Delsole et al., 2002,  

              2006, 2009 
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