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Spatiotemporal Predictive Modeling for Climate 

• Model phenomenon y using ‘predictors’ x 
– Example: y is total Indian summer monsoon rainfall (ISMR)  
 

• ‘Predictors’ x: numerous spatial and temporal features 
– Highly correlated data, temporal lags, spatial teleconnections 

 
• Mechanistic understanding: climate processes as predictors 

– Representation of processes: climate indices, spectral  information 
 

• Multiple mechanisms: Occam and Murphy 
– Different models for different phases of the climate system 
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Small Sample Regime and Stability  

• Modeling complex phenomenon with small samples 
– MPU*: High accuracy, limited stability 
– Stability needs to be a priority 
– Iterative Occam: refine stable, moderately accurate models 
 

• ‘Proving’ stability: Uniform bounds for model class  
– How many samples are sufficient?  
– Explicit modeling assumptions 

 
• ‘Testing’ stability: Robustness 

– Are the results stable?  
– Potentially more general scope 
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Small Sample Regime: Bias, with Regularization 

• General regularized regression (Banerjee et al., 2014) 

– E.g., sparsity, group-sparsity, hierarchy, ridge, low-rank 
 

 
 

: bias structure of     (e.g., based on domain knowledge) 
 
 
 

 
• Performance guarantees for regularized regression  

– How many samples are needed to accurately estimate β? 
– What is the rate of convergence? 

0 0 0 0 0 0 ……………… 0 

β1    β2   β3 β4   β5 …………………………................ βp-1  βp 

Group sparsity over linear regression coefficients 
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Why Should I Care?  

• Estimation in simple vs structured problems 
– Example: (a) mean of samples {xi} vs. (b) Lasso on samples {(yi,xi)} 

 

• Structured problem with n samples 
– “Bad” phase: n < n0, do not trust the estimate 

– “Good” phase: n ≥ n0, estimate is good, error decreases as 𝑐𝑐
𝑛𝑛
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Gaussian “width” of sets  
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Supremum of (geometric) Gaussian process, indexed by u ϵ Ω 

“What is the maximum level a certain river is likely to reach over the 
next 25 years? (Having experienced three times a few feet of water  

in my house, I feel a keen personal interest in this question.) …” 



Structured Models: Rate of convergence 
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c depends on “width” of norm ball, {u | R(u) ≤ 1} 

    L∞                       L2                      L1                  Lq, q ϵ(0,1)           L0      
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Banerjee et al., 2014 



Structured Convexity in High-Dimensions 

8 Milman, 1998, Vershynin, 2014 
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• Gaussian widths 
– For L1 ball: 
– For L2 ball: 

Low-d 
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Structured Models: Sample Complexity 
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Bickel et al., 2009, Chandrashekaran et al., 2012, Negahban et al., 2012, Banerjee et al., 2014, Tropp, 2015 

n0 depends on “width” of error cone 

Structured models have smaller error cones 

Domain knowledge Structured model Stable model 
with less samples 



Great Lakes Precipitation 
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Predictors: 
• Climate indices (long range), e.g., NAO monthly 
• Atmospheric variables (station level, regional)  

Stable sparse estimation: 2 levels of feature selection 
• Lasso: L1-norm regularized linear regression 
• Stability test: Randomly permuting y, fixed x 

features selected, with weights 

features selected, with weights 



Combing Global Climate Model Outputs 

Tasks: South American 
regional temperature  

Source: UCAR/NCAR 
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Global Climate Models (GCMs) 

Combining GCM outputs as multi-task learning (Goncalves et al., 2014) 
• Tasks: Climate model weights for a process, variable, or region 
• Task based regularization 

• Model weights on related tasks should be similar 
• Several alternatives as baselines 

• Model average (IPCC), ‘Best’ GCM, etc. 
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RMSE Comparison: Multi-task vs Baselines 

 1.621 
(±0.020) 

 1.410 
(±0.037) 

 0.780 
(±0.039) 
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Latent Variable Models: Iterative Occam 

• Predictive modeling, data {(xi,yi)} 
– Model with no latent variables, e.g., single linear regression (SLR) 

 
 

 
– Model with latent variables, e.g., mixture of linear regression (MLR) 

 
 
 
• When will MLR succeed? 

– Multiple mechanisms responsible for y 
– At any given point, one mechanism is active/dominant 
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Indian Summer Monsoon Rainfall (ISMR) 

• Predicting total ISMR 
– Long period average (LPA): 890 mm, variation within 10% of LPA  
– Gowariker (1991),  DelSole and Shukla (2002, 2006), Rajeevan et al. 

(2006), Saha et al. (2015) 
 

• Dataset: 66 years, 1948-2013, covariates from Saha et al. (2015) 
 
• Methodology, repeated 200 times  
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ISMR Prediction: SLR, train vs test 
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ISMR Prediction: SLR vs MLR, train  
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ISMR Prediction: MLR, train vs test  
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ISMR Prediction: SLR vs MLR, test 
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Are We There Yet?  

• Identifying nonlinear multivariate dependencies 
– “Simple” nonlinearities: monotonic dependencies 
– “Complex” nonlinearities: combination of simple nonlinearities 
 

• Complex processes and interactions 
– Oscillations and phases: different dependencies in each phase  
– Temporal lags, feedback mechanisms, long memory processes 
– Superposition effects 
– Internal variability 

 

• Causal discovery 
– Mechanistic understanding, based on climate processes 
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Conclusions 

• Modeling complex phenomenon with small samples 
– Stability needs to be a priority 
– Iterative Occam: refine stable, moderately accurate models 

 

• Domain knowledge helps build structured models 
– Structured models are stable with small samples 
– Identifies dominant factors, improves understanding 

 

• Multiple mechanisms: Latent variable models 
– Different models for different phases of the climate system 

 

• Better approaches for proving/testing stability 
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