Identifying Rare Class in Absence of True Labels
Application to Monitoring Forest Fires from Satellite data

Varun Mithal
(University of Minnesota- Twin Cities)
NSF Expeditions Workshop August 4, 2015
Global Mapping of Forest Fires

Mapping fires is important for...

- Climate change studies
e.g., linking the impact of a changing climate on the frequency of fires

- Carbon cycle studies
e.g., quantifying how much CO$_2$ is emitted by fires (critical for UN-REDD)

- Land cover management
e.g., identifying active deforestation fronts

Aerial/Ground Surveys
- Accurate
- Expensive
- Globally infeasible

Manual inspection
- Human effort
- Difficult due to rare class
- Globally infeasible

Computational Techniques
- Automated
- Cost-effective
- Globally scalable
- Historical as well as near-real time
Predictive Modeling Approach

Given a feature vector $x \in \mathbb{R}^d$

predict the class label $y \in \{0, 1\}$

<table>
<thead>
<tr>
<th>Instance x_i</th>
<th>Label y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>x_N</td>
<td>1</td>
</tr>
</tbody>
</table>

Forest Fire Mapping

Multispectral reflectance data
- 7 spectral bands
- 500 m spatial resolution
- 8-day composites

Predicts whether a given pixel is burned or not?
Challenges: Heterogeneity

Variations in the relationship between the explanatory and target variable

- Geographical heterogeneity
- Seasonal heterogeneity
- Land class heterogeneity

<table>
<thead>
<tr>
<th>Train</th>
<th>Test</th>
<th>Precision</th>
<th>Recall</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>California</td>
<td>94</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>Georgia</td>
<td>California</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Georgia</td>
<td>Georgia</td>
<td>87</td>
<td>53</td>
<td>66</td>
</tr>
<tr>
<td>California</td>
<td>Georgia</td>
<td>10</td>
<td>30</td>
<td>16</td>
</tr>
</tbody>
</table>

Temporal heterogeneity: Impossible to obtain training samples going back in time

Global availability of labeled samples for burned area classification
Challenges: Ultra skewed class distribution

Burned areas (California) in year 2008
Positives : 10^3 sq. km.
Negatives: 10^6 sq. km.

Prediction at every time step: 46×10^6

- Requires extremely low FPR
- Overall accuracy is not very useful
- Need to jointly maximize precision and recall
 - Harmonic mean (F-measure)
 - Geometric mean
• **Step 1**: Learn classification models using imperfect (noisy) labels

• **Step 2**: Combine predictions from classification model and the imperfect label

• **Step 3**: Exploit guilt-by-association using spatial context
Learning with imperfect labels

Supervised Learning

Expert-annotated Labels
- SVM
- Decision tree
- Logistic regression

Inadequate training samples
- Semi-supervised
- Active Learning
- Multi-view
- Multi-task

Imperfect Labels

Multiple annotators
- Learning with crowds
 Raykar et al.

Single annotator
- Partial Supervision
 - Positive Unlabeled learning
 Bing Liu et al.
 - Elkan et al.

Imperfect Supervision
- Balanced
 Natraj et al.
- Rare class
Step 1: Train a classifier using imperfect labels

Features (x) True Labels (y)

Use a set of features to derive imperfect labels a

$$\alpha = Pr(a = 0 | y = 1)$$

$$\beta = Pr(a = 1 | y = 0)$$
Step 1: Train a classifier using imperfect labels

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label
Learning with imperfect labels

Assumptions

(1) \(\alpha + \beta < 1 \)

(2) Imperfect label is conditionally independent of feature space given the true label
Learning with imperfect labels

Assumptions

(1) \(\alpha + \beta < 1 \)

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to \(Pr(a=1|x) \) and \(Pr(y=1|x) \) is identical

Test instances ordered according to \(Pr(y=1|x) \)
Learning with imperfect labels

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to $Pr(a=1|x)$ and $Pr(y=1|x)$ is identical

Test instances ordered according to $Pr(y=1|x)$

Maximizes Classification Accuracy
Learning with imperfect labels

Assumptions

1. \(\alpha + \beta < 1 \)

2. Imperfect label is conditionally independent of feature space given the true label

Ranking according to \(Pr(a=1|x) \) and \(Pr(y=1|x) \) is identical

Not optimal
Learning with imperfect labels

Assumptions

(1) \(\alpha + \beta < 1 \)

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to \(Pr(a=1|x) \) and \(Pr(y=1|x) \) is identical

Approach
Use labeled validation data set to select threshold.

Labeled data not available
Learning with imperfect labels

Assumptions

1. \(\alpha + \beta < 1 \)

2. Imperfect label is conditionally independent of feature space given the true label

Ranking according to \(Pr(a=1|x) \) and \(Pr(y=1|x) \) is identical

*Identical prediction is possible using appropriate threshold on \(Pr(a=1|x) \), for every threshold on \(Pr(y=1|x) \). Natarajan 2013

Approach

Select the threshold that maximizes classification accuracy by treating imperfect labels as target.

Our Contribution

We prove that for balanced datasets this approach is optimal.
Rare class

Conditional probability

\[Pr(y=1|x) \]

Maximizes Classification Accuracy

Recall = 0.20
Precision = 1
Test instances ordered according to $Pr(y=1|x)$

Maximizes Classification Accuracy

Recall = 0.20
Precision = 1

Maximizes precision*recall

Recall = 0.8
Precision = 0.5
Rare class

Pr(y=1|x)

Test instances ordered according to Pr(y=1|x)

Conditional probability

Maximizes Classification Accuracy

Recall = 0.20
Precision = 1

Maximizes precision*recall

Recall = 0.8
Precision = 0.5

Challenge: Accurately estimate precision and recall with imperfect labels
Challenge: Accurately estimate precision and recall with imperfect labels

Our Contributions:

1. A new method to estimate precision*recall using imperfect labels.
2. We prove that the selected threshold maximizes the true precision*recall
Step 1: Train a classifier using weak labels

Step 2: Combine predictions of classifier with imperfect labels

- Instance is labeled positive only if it is flagged positive by both
- Considerably reduces the number of false positives
- Incorrectly prunes away some positives

For rare class scenarios, the combination step drastically increases precision with relatively smaller loss of recall.
Step 1: Train a classifier using weak label
Step 2: Combine predictions

Step 3: Guilt-by-association

Observations:
• Combination step prunes away some positives
• Missed positives in the neighborhood of confident positives

Approach:
• A collective classification method to make use of labels of neighbors during final classification of each node
Results for Burned Area Mapping

California State

- Weak label
- RAPT Step 1
- GT-based classifier
Results for Burned Area Mapping

California State

- Weak label
- RAPT Step 1
- GT-based classifier
- RAPT Step 2
- RAPT Step 3

Precision vs. Recall graph.
Results for Burned Area Mapping

Georgia State
Results for Burned Area Mapping

Montana State

- Weak label
- RAPT Step 1
- GT-based classifier
- RAPT Step 2
- RAPT Step 3
Global Monitoring of Fires in Tropical Forests

Fires in tropical forests during 2001-2014

1 million sq. km. burned area found in tropical forests

- more than three times the total area reported by state-of-art NASA products.
Validation confirmed that the additional burned areas detected using RAPT are actual burns missed by state-of-art products.
Validation: Burn Index

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is $dNBR$

- Used for validation in previous studies, including MCD45

$$NBR = \frac{\text{band2} - \text{band7}}{\text{band2} + \text{band7}}$$

$$dNBR = NBR_{\text{pre fire}} - NBR_{\text{post fire}}$$
A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event. A commonly used index is $dNBR$ - Used for validation in previous studies, including MCD45

$$NBR = \frac{\text{band2} - \text{band7}}{\text{band2} + \text{band7}}$$

$$dNBR = NBR_{\text{prefire}} - NBR_{\text{postfire}}$$
A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is $dNBR$ - Used for validation in previous studies, including MCD45

$$NBR = \frac{\text{band2} - \text{band7}}{\text{band2} + \text{band7}}$$

$$dNBR = NBR_{\text{prefire}} - NBR_{\text{postfire}}$$
Validation: Burn Index

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is $dNBR$
- Used for validation in previous studies, including MCD45

$$NBR = \frac{\text{band2} - \text{band7}}{\text{band2} + \text{band7}}$$

$$dNBR = NBR_{\text{prefire}} - NBR_{\text{postfire}}$$

![Fraction of area in square kilometers stratified by dNBR - only UM, Negatives(large events)](image)
A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is $dNBR$
- Used for validation in previous studies, including MCD45

$$NBR = \frac{\text{band2} - \text{band7}}{\text{band2} + \text{band7}}$$
$$dNBR = NBR_{\text{prefire}} - NBR_{\text{postfire}}$$
Dynamics of Fire Event

Region in North Brazil

Comparison with MCD45

Probability of burn

Time of burn
Questions?
Comparing with total burned areas reported by MCD45
What fraction of MCD45 do we recall?
Comparison of exclusive burned areas

\[y = x \]