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Global Mapping of Forest Fires

Mapping fires is important for...

e Climate change studies

e.g., linking the impact of a changing climate on the frequency of fires

e (Carbon cycle studies
e.g., quantifying how much CO0, is emitted by fires (critical for UN-REDD)
e Land cover management

e.g., identifying active deforestation fronts
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Aerial/Ground Surveys Manual inspection Computational Techniques
— Accurate — Human effort — Automated
— Expensive — Difficult due to rare class ~ — Cost-effective
— Globally infeasible — Globally infeasible — Globally scalable

— Historical as well as near-real time



. Predictive Modeling Approach

Given a feature vector € R?
predict the class label y € {0, 1} Forest Fire Mapping

Instance Label Multispectral reflectance data

T. € Rd Y; < y — {O, 1} e 7 spectral bands
7

e 500 m spatial resolution

1 e 8-day composites
L1
o 0
I3 0
L4 1 Forest fire mapping
I N 1 Predicts whether a given

pixel is burned or not?
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Challenges: Heterogeneity

Variations in the relationship between

the explanatory and target variable
e Geographical heterogeneity

e Seasonal heterogeneity

e Land class heterogeneity

Train Test Precision | Recall | F-value
California | California | 94 65 72
Georgia California | 53 53 53
Georgia Georgia 87 53 66
California | Georgia 10 30 16

Temporal heterogeneity:
Impossible to obtain training samples going back in time

Global availability of labeled samples
for burned area classification



Challenges: Ultra skewed class distribution

Burned areas (California) in year 2008
# Positives : 103 sqg. km.
# Negatives: 10° sq. km.

Prediction at every time step: 46 * 10°

» Requires extremely low FPR

» Overall accuracy is not very useful

» Need to jointly maximize precision and recall
e Harmonic mean (F-measure)
e (Geometric mean




RAPT: RAre class Prediction in absence of ground Truth

e Step 1: Learn classification models using
imperfect (noisy) labels

e Step 2: Combine predictions from classification
model and the imperfect label

e Step 3: Exploit guilt-by-association using spatial
context




Learning with impertect labels

Supervised Learning

Expert-annotated Labels Imperfect Labels
Sufficient Inadequate Multiple annotators  Single annotator
e . - Learning with crowds
training samples trammg s_amples Raykar et al.
SvMm Semi-supervised
Decision tree Active Learning
Logistic regression Multi-view
Multi-task .
Partial Supervision Imperfect Supervision
Positive Unlabeled learning
Bing Liu et al.
Elkan et al.
Balanced Rare class

Natrajan et al. *
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Rare Class Prediction in Absence of Ground Truth

Step 1: Train a classifier using imperfect labels

Features (x) True Features (x)
Labels (y)

Imperfect
labels (a)

a= Pr(a=0|y=1)

Use a set of features to derive imperfect labels a
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Rare Class Prediction in Absence of Ground Truth

Step 1: Train a classifier using imperfect labels

Features (x) T

Features (x)

Assumptions
(1) a + g <1

(2) Imperfect label is conditionally independent
of feature space given the true label
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Learning with impertect labels

Assumptions
(1) a + g <1

(2) Imperfect label is conditionally independent
of feature space given the true label




Learning with impertect labels

Assumptions
(1) a + g <1
(2) Imperfect label is conditionally independent
of feature space given the true label

| |

Ranking according to Pr(a=1/x) and Pr(y=1/x) is identical

Pr(y=1/x)

Conditional
probability

Test instances ordered according to Pr(y=1/x)




Learning with impertect labels

Assumptions
(1) a + g <1
(2) Imperfect label is conditionally independent
of feature space given the true label

!

Ranking according to Pr(a=1/x) and Pr(y=1/x) is identical

Maximizes Classification Accuracy

® 000 00O
Test instances ordered according to Pr(y=1/x)

Conditional
probability




Learning with impertect labels

Assumptions
(1) a + g <1

(2) Imperfect label is conditionally independent
of feature space given the true label

!

Ranking according to Pr(a=1/x) and Pr(y=1/x) is identical

/

Not optimal

Conditional
probability

Test instances ordered according to Pr(y=1/x)




Learning with impertect labels

Assumptions
(1) a + g <1

(2) Imperfect label is conditionally independent
of feature space given the true label

!

Ranking according to Pr(a=1/x) and Pr(y=1/x) is identical

Approach

Use labeled validation data set to select

threshold.
Pr(a=1[x)

x

| eoceocsceocov0000 00609

Labeled data not available

Test instances ordered according to Pr(y=1/x)




Learning with impertect labels

Assumptions
(1) a + g <1

(2) Imperfect label is conditionally independent
of feature space given the true label

!

Ranking according to Pr(a=1/x) and Pr(y=1/x) is identical

Approach
Select the threshold that maximizes
classification accuracy by treating imperfect

Pr(a=1]x) labels as target.
—
0 00 0 00 00 90 0 00 ® @® ® OurcContribution
Test instances ordered according to Pr(y=1/x) We prove that for balanced datasets this

approach is optimal.

*|dentical prediction is possible using appropriate threshold on Pr(a=1/x), for every threshold on Pr(y=1/x). Natarajan 2013
15




Rare class
Pr(y=1/x)

g £ Maximizes Classification Accuracy
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Rare class

Pr(y=1/x)

Tg" £ Maximizes Classification Accuracy

5 0

24 Recall = 0.20

© o Precision =1
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Pr(y=1/x)
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5 = Maximizes precision*recall
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€ S Recall = 0.8

O o . .

Precision = 0.5
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Test instances ordered according to Pr(y=1/x)




Rare class

Pr(y=1/x)

Tg" £ Maximizes Classification Accuracy
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5 = Maximizes precision*recall

£ 3

€ S Recall = 0.8

O o . .

Precision = 0.5

o0 0 60 © 00

Test instances ordered according to Pr(y=1/x)

Challenge: Accurately estimate precision and recall with imperfect labels




Rare class

Pr(y=1/x)
Tg" £ Maximizes Classification Accuracy
5 0
24 Recall = 0.20
© o Precision =1
I X KX . |
Pr(y=1/x)
© > >
5 = Maximizes precision*recall
£ 3
€ S Recall = 0.8
O o . .
Precision = 0.5
o0 0 60 © 00

Test instances ordered according to Pr(y=1/x)

Challenge: Accurately estimate precision and recall with imperfect labels

Our Contributions:
(1) A new method to estimate precision*recall using imperfect labels.
(2) We prove that the selected threshold maximizes the true precision*recall



Rare Class Prediction in Absence of Ground Truth

Step 2: Combine predictions of classifier with imperfect
labels

* Instance is labeled positive only if it is flagged positive by both
 Considerably reduces the number of false positives

e Incorrectly prunes away some positives

For rare class scenarios, the combination step
drastically increases precision with relatively
smaller loss of recall.

1. 5 10 50 100 500 1000 S000
skew



Rare Class Prediction in Absence of Ground Truth
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e Combination step prunes away some positives
e Missed positives in the neighborhood of confident positives

Approach:
A collective classification method to make use of labels of
neighbors during final classification of each node




Results for Burned Area Mapping
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Results for Burned Area Mapping
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Results for Burned Area Mapping
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Results for Burned Area Mapping
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Results for Burned Area Mapping
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Global Monitoring of Fires in Tropical Forests

Fires in tropical forests during 2001-2014
1 million sg. km. burned area found in tropical forests
e more than three times the total

area reported by state-of-art
NASA products.

RAPT




Validation: Multiple sources

MCDA45

Burn scar in Landsat composite
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Validation confirmed that the additional burned areas detected
using RAPT are actual burns missed by state-of-art products




Validation: Burn Index

A burn index tries to capture the degree of burn at a
location and is computed as a function of spectral values
before and after the event.

NBR — band2 — band7

band2 + band7
A commonly used index is dNBR dNBR = NBRprefire = NBRpost fire

- Used for validation in previous studies, including MCD45




Validation: Burn Index

A burn index tries to capture the degree of burn at a
location and is computed as a function of spectral values
before and after the event.

band2 — band7
band2 + band7

NBR =

A commonly used index is dNBR dNBR = NBRprefire = NBRpost fire
- Used for validation in previous studies, including MCD45
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Validation: Burn Index

A burn index tries to capture the degree of burn at a
location and is computed as a function of spectral values

before and after the event.

A commonly used index is dNBR
- Used for validation in previous studies, including MCD45

band2 — band7
band2 + band7
dNBR = NBRpre_ffjre - NBRpOStf?:T‘B

NBR =

Fraction of area in square kilometers stratified by dNBR - Common detection and Negatives
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Validation: Burn Index

A burn index tries to capture the degree of burn at a
location and is computed as a function of spectral values

before and after the event.

A commonly used index is dNBR
- Used for validation in previous studies, including MCD45
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Validation: Burn Index

A burn index tries to capture the degree of burn at a
location and is computed as a function of spectral values
before and after the event.

band2 — band7
band2 + band7

A commonly used index is dNBR dNBR = NBRprefire = NBRpost fire
- Used for validation in previous studies, including MCD45

NBR =

gas — Fraction of area in squame kilomebters stratified by dNPR - only UM, only B&{large events)

Only MCD45

ol Only RAPT
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Dynamics of Fire Event

¢ Googlee

Region in North Brazil Comparison with MCD45
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Questions?




Comparing with total burned areas reported by MCD45
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What fraction of MCD45 do we recall?
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Comparison of exclusive burned areas
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