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Earth Science Big Data Conundrum?
In short

Earth Science data is Big Data
Models and Analytics are core

components

Data center infrastructure is an
integral component in delivering data
High Performance Computing
solutions are necessary for actionable
intelligence

Live Data Visualization of large data
sets is a pressing need

More? What are your thoughts?

Storing more data

Accessing large quantities of data
faster

Understanding better what the data
tells us (structured vs. unstructured
data)

Integrating efficiently SaaS, Cloud
Computing Solutions and Data Access
Following industry standards




Can We Solve it?
Yes we can

Access and sort data in an efficient manner (deploy open database solutions like
Apache Hadoop, Mongo DB, Cassandra, etc.)

Improve Legacy Infrastructure to meet demands of real-time analytics

Scale-out, solid-state storage arrays — fulfill capacity and throughput demands of fast
analysis

Write massively parallel applications, distributed jobs, GPU processes

Deploy cloud computing solutions (e.g. Openstack, AWS, Rackspace)

Efficient learning algorithms to extract usable information from overwhelming data
Visualize Data (Highcharts, Tableau, MapBox/Leaflet)

More? Any thoughts?




NASA EARTH EXCHANGE (NEX)
OVERVIEW

VISION

To provide “ ” to the Earth
science community addressing global environmental
challenges

To improve efficiency and expand the scope of NASA
Earth science technology, research and applications
programs

+ NEX is virtual collaborative that brings scientists
and researchers together in a knowledge-based
social network and provides the necessary tools,
computing power, and data to accelerate research,
innovation and provide transparency.
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@ NEX Solutions

» NEX provides access to wide variety of ready-to-use data

» NEX provides the ability to bring “code to data”

NEX offers capabilities for reproducing science
through virtual machines and scientific workflows

y NEX offers state-of-the-art advanced compute
capabilities
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cience As A Service”

Ready-to-use data Ready-to-use models Acgess to workﬂows/
virtual machines
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Data to Knowledge

Data-Model Integration Knowledge Portal

ECC/CAST

Terrestrial Observation and Prediction System F Vegetation Productiviy
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Adapting to new realities

Data volumes, network bandwidth

Mission Operations Science Operations
Flight Operations, Data Science Data Processing, Distributi
Data Data Capture, Transport to Data Management, 1K : LoD
Acquisition Initial Processing, Data Centers/ Interoperable Data Dataa;:ccess

Backup Archive SIPSs Archive, and Distribution

EOSSpacecraft &
I N Tracking and Data
; Relay Satellite

- ; =2 © (TDRS)

e White Sands  |EOS Data Operations
s L Complex (WSC) System (EDOS)
- -‘ M Data Processing

K

Direct
Broadcast
(DB)

< .“

EOS Polar EOS Operations NASA - '
Ground Stations Center (EOC) Integrated Instrument Teams
Mission Control Services and Science
4 Network Investigator-led
NISN Processing Systems
R}Iissiozl {SIESs)
Services

Direct Broadcast/
Direct Readout
Stations

Earth Science Data Operations



Drivers for an Earth Science Collaborative.

Researchers spend a major fraction of their time dealing with data
(finding, ordering, waiting, downloading, pre-processing...)

Moving data sets that are getting larger each year over WAN is getting
expensive & time-consuming

Sharing knowledge (codes, intermediate results, workflows) is difficult.
Repeated low level IT efforts waste time and resources

No standard mechanisms for transparency and repeatability

Culturally — local access is how science is done




NEX Specs...

Portal

Web Server
Database Server
503 Registered Members

Sandbox

96-core server, 264GB
memory, will have 320
TB storage

48-core server, 128 GB,
163 TB storage

720-core dedicated
queue + access to rest of
Pleiades

181 users/ 44 active
(153/40 last year)

1.3 PB storage (from
850TB)

Data (>800 TB on &
near-line)

Data (450 TB — constantly
increasing)

Landsat (>2M scenes)

MODIS

TRMM

GRACE

ICESAT

CMIP5

NCEP

MERRA

NARR

GLAS

PRISM

DAYMET

NAIP

Digital Globe

NEX-DCP30

WELD

Models/ Tools/
Workflows

Model Codes
GEOS-5
CESM
WRF
RegCM
VIC
BGC
CASA
TOPS
BEAMS
Fmask
LEDAPS
METRIC




Scale it up

]

From a single scene to gIobaI Mapping global landscapes every month at 30m




Classes of NEX “Big Data” Projects

. Fully distributed data processing with no inter-process data dependencies
« Data sizes: 100TB — 5PB

‘ Data-mining with some inter-process data dependencies
« Data sizes: 300TB - 2PB

. Analytics and Science Applications
« Database query systems: 1 —10TB

‘ Provenance and knowledge graph queries
* 100 million to 1 billion triples in 2015

. Climate and ecosystem modeling

» Computationally intensive time and space data dependent processing

- 2-20TB

e
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Machine Learning &

Climate Input Data



What is Machine Learning ?

Machine Learning is a science that
enables us to teach computers to take
actions without being explicitly
programmed to do so.

The goal of Machine Learning is Artificial
Intelligence.

Can machines distinguish between cats
and dogs?




Why do we care about Machine Learning ?

From Google’s search to Facebook’s automatic face
recognition to Apple’s Siri, Machine learning is everywhere.

Data Pattern

Analytics Recognition
chin

Learning

Data Analytics and Machine Learning have become
synonymous over the years.

Wherever there is a need for analyzing big data, we need
Machine Learning.

Artificial
Intelligence

Predictive
Modelling

What are the questions it can answer?

Does an image contain a particular object?

Given an image patch, is it possible to label it as

belonging to a particular class?




Basic Example?

In a forested or marine landscape, is it
possible to segregate different plant
species, habitat zones, wind farming
zones?

Legend
- Avicennia marina

| I Bruguiera exaristata

| - Ceriops tagal

- Lumnitzera racemosa

| I Rhizophora stylosa



The Home of Data Science

COMPETITIONS = CUSTOMER SOLUTIONS - JOBS BOARD

Get started »

Dashboard

Home f
Data

Make a submission 4

Information i ]

Description
Evaluation
Rules
Prizes
References
Timeline

Forum

Leaderboard =

Leaderboard

1. Reformed Gamblers
2.0 0

3. Jeffrey De Fauw

4, Julian de Wit

$100,000 * 389 teams

Diabetic Retinopathy Detection

Enter/Merge by
[ ]

Tue 17 Feb 2015

Mon 27 Jul 2015 (55 days to go)

Competition Details » Getthe Data » Make a submission

|dentify signs of diabetic retinopathy in eye

images

Diabetic retinopathy is the leading cause of blindness in the working-age
population of the developed world. It is estimated to affect over 93 million

people.

The US Center for Disease Control and Prevention
estimates that 29.1 million people in the US have
diabetes and the World Health Organization
estimates that 347 million people have the disease
worldwide. Diabetic Retinopathy (DR) is an eye
disease associated with long-standing diabetes.
Around 40% to 45% of Americans with diabetes
have some stage of the disease. Progression to
vision impairment can be slowed or averted if DR is
detected in time, however this can be difficult as

A Aicanca Anftarm clhhatarre £a122 evirva kA e 11t i+ e



Types of Learning?

Supervised Learning Unsupervised Learning

= Learning with a teacher = Learn relationships using unlabeled
data

= Learn a function that maps inputs to
outputs using labeled training examples = Discover latent patterns in data without
supervision

Reinforcement Learning Semi-Supervised Learning

= Perform a goal in a dynamic and volatile " Lies between supervised and
environment unsupervised learning

No teacher supervision Some of the training data are unlabeled

Driving a vehicle or playing a game Goal is to get better predictive
against an opponent performance than either supervised or

unsupervised learning alone




‘ Machine Learning Applications
For building Climate Resiliency Tools

Showcasing NEX Projects

- NEX Satellite Anomaly Workflow

- NEX Global Drought Monitoring

- NEX WELD Processing

-  NEX North American Forest Dynamics (NAFD) Processing
- NEX Carbon Monitoring System (CMS) Processing

- NEX Supporting National Climate Assessment (NCA)

- NEX for Agricultural Monitoring



Machine Learning for Anomaly Detection
A tale of two droughts/Amazon 2005 & 2010

TO°W 60°W 50°W 70°W 60°W 50°W

10°N

10°S

70°W 60°W 50°W

command prompt: prompt. run the code of ‘map
[path]$ matlab & “TRMM_process_seas_anomaly_jas.m to geographic projection — prepare the
2) From the MATLAB command input files.

0° 0° prompt, run the code 2) Check the input and output directory 2) From the MATLAB command
“C5_VI_main_lkm_anomaly 2010_S path in the beginning of the code - write prompt, run the code

10°S

10°S

10°N

80°W

1

= Compute seasonal (JA!
standardized anomaly (2005 &
2010) for MODIS tiles
covering Amazon.

- Input files 1) land-water
binary map. 2) C5 MOD13A2
NDVI/EVI hdf files (Feb. 2000

to Dec, 2010).

« Compute seasonal (JAS)
standardized anomaly (2005 &
2010) for the TRMM
precipitation data.

« Input files: 1) 0.25 deg land
cover map, 2) TRMM 3B43
hdf data (Jan. 1998 to Dec,
2010).

2

3

- Create map showing NDVI/
EVI anomalies for drought
affected region.

- Input files: 1) NDVIVEVI
a.nomzly maps { ﬁ'om Block 1

2) Preci
Fom Block 2351 o sover

map at 1km (MOD12Q1).

Output Results

1) Type MATLAB at the shell

DHR_filter_ v2_SG.m”

3) Check the input and output directory
path in the beginning of the code - write
the appropriate climatology and
seasonal anomaly files for tiles
mosaicked over the Amazon region.

A working version of the code is
available at the directory

file://Inxsrv87 nas nasa gov/u/wk/sgang
uly/scratch/amazon_ 2010/

1) From the MATLAB command

the appropriate climatology and
seasonal anomaly files for TRMM data
in the specified output path.

A working version of the code is
available at the directory
file://Inxsrv87 nas nasa

3) Open ENVV IDL to convert native

“C5_VI_2010_: SDH:R QA2 anom_bin
/_map_mask SG.m’

3) Check the input and output directory

path in the beginning of the code - write

the EVI/ NDVI anomaly maps for the

drought affected pixels and for pixels

by the land cover map

uly/scratch/amazon 2010/

A working version of the code is
available at the directory
file://Inxsrv87 nas nasa
uly/scratch/amazon 2010/

70°W 60°W

80°wW

0.25°x0.25° Precip. standardized anomalies 1x1km?2 NDVI standardized anomalies
< -2.0 -1.5 -1.0 1.0 1.5 > 2.0 <-2.0 -1.5 -1.0 1.0 1.5 > 2.0

TRMM MODIS

Samanta & Ganguly et al., GRL, 2011
Xu et al., GRL, 2011

Long-term time series data and spatial
context — find spatial anomalies in extreme
events.



Anomaly Detection Workflow.
Global Drought Monitoring, 2012

Total # of Scenes:

> 1Million for 15
years

Total Input Data

> 10 TB
Processing 15 years of
Total Output Data Global MODIS data now
takes less than half an
> 50 TB hour

-0.25 -0.2 -0.15 -0.1 -0.05 (0] 0.05 0.1 0.15 0.2 0.25



Global Drought Monitoring
2012

2012 NDVI' July Anomaly
Spatial Resolution: 250m




October 2010

Web Enabled Landsat Data:
Going Global, Roy et al.,

Creating Global Monthly Landsat
Composites, 1999 - Present

Takes about 6,000 scenes each
month using WELD system

Prototyping land products from
Landsat: LAI/FPAR, Albedo




North American Forest Disturbance (NAFD, Goward et al.,)

Expanding from 23 samples
to Wall-to-wall coverage B PesiingFost e scrics N v N o o B v O
Processing 96000 scenes

from 1985-2010 on NEX

Persisting Nonforest [l Water 1385 1057 [ voc [ oot I o I <5 I 10 [ o T 2cot [ oco O ocs O o7 | e 2o

2004 [ 206 I 2008 T %00




Detecting Forest Disturbance at 30m Spatial Resolution @

Jlllﬂﬂ

4.3 billon pixels classified as
forest

Polygonize annual disturbance
patches and geometric
attributes (210,031,105
polygons for US)

434 path/rows (scenes) x 29
years x several scenes / year —
16 hours wall time for 12 cores/
node x 1,736 nodes ~ 20,832
cores

Problem decomposition -
scene/node, polygon/core,
some polygon overlap across
nodes

Used R packages and custom
parallel wrapper



Historical Landsat Analysis.

Forest Leaf Area Index for the Conterminous United States Derived from Landsat Global Land Survey (GLS) 2005 Data

bal Leaf Area Index from Landsat: Aigorithm Formulation and Demonstratior

Forest Leaf Area Index

‘/: t‘\\‘(/</'
S22\ o 1 o3 45

e BN
Map of Leaf Area Index (LAI) generated using Landsat Thematic
Mapper data and a modified MODIS LAI/FPAR algorithm

Landsat Thematic Mapper
1984-2012

Monthly composites of
surface reflectances

Biophysical products such
as LAl

Focus on:

Land cover changes
Migration of ecosystems
High altitude ecosystems
Forest mortality




NEX supporting the Carbon Monitoring System (CMS).

Several Process-based models and
machine learning algorithms

4. .. Canopy Height

LAl 0t 8 .
Elevation  fromLandsat "~ fromICESat GLAS are used to estimate total carbon
from SRTM f MoDis ( sequestration potential for the U.S.
2 7
ESE . W /Gy forests.

)\
p
\H ‘IJ;" J AGLB Mg/ha
SLINE B o
Forest Aboveground Biomass
25-50
at 30-m .

. 50-75

75-100
100-150

[ 150-200
[ ] 200-250
[ ] 250-300
[ 300-350
‘ [ 350-400
Aboveground [l 400-450

Vegetation Biomass 3 [ 250-500
. b
Saatchi & Ganguly et al. at 250-m g . [ > 500

Creating 3D vegetation from multiple
sensors




NEX supporting the National Climate Assessment (NCA).

Promoting consistency, repeatability,
and transparency in global change science

= Machine Learning Model

eeeeeeeeeeeeeeeeee
aaaaaaa
Maximum Temperature
July, 2099
GFDL-CM3, RCP 8.5

Climaté modelin

ownscaling

HYDROELECTRIC
SNOWPACK POWER

o 0
©® @ 2
w 5 AGRICULTURE <yl = (U
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o 77 HAOR /o) E
> -::? E - —
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g 10K1930,,,0,
LL

WATER QUALITY bl

Workflows




Input: 35 CMIP5 models
Downscaling method: BCSD
Temporal Resolution: Monthly
Spatial Resolution: 800m
Temporal Resolution: 2006-2100
PRISM data for bias correction

Output variables:
Ave Max
Temperature

Ave Min temperature
Total Precipitaiton
Ave Humidity

Ave Solar Radiation

Individual model
outputs
Ensemble means
Percentiles
Volume: 22TB

Distribution of the downscaled
data

From: GSFC/NCCS
Format: Earth System Grid (ESG)
API from Google Earth Engine




Mapping of Crop Water Requirements and Drought Impacts on Ag Productio@

* Prototyping of workflows for CA e |
Department of Water Resources for : i’
mapping crop water requirements and
drought impacts on ag production

- Summer Idle

Cultivated

Emergent

County Bndry

 Extraction and analysis of VI timeseries
for 200,000+ agricultural fields in CA
Central Valley

e Distributed processing of 18,400
Landsat scenes used in prototyping for
California / calculation of 10 year
baseline

Sept 22, 2014
Central Valley
Summer Conditions
(June 1 — Sept 22)

 NEX workflow supports scaling for
other regions / states

 Data featured in 5 pg poster in Nat Geo
story on drought in the West (Oct 2014)




NASA EARTH EXCHANGE



Previous Year Effort

data coding’j

ad

LABS

L workflows

CORE

Satellite
Data

=

AWS S3

Climate
Data

i.‘
u
-
wu

'

)

On-demand
computing

AWS EC2

analytics

government

w

PUBLIC
FACING

challenges




Previous Year Effort

[

DATA

VIRTUAL LABS

PENNEX WORKSHOP 2014

COMPETITION

J L

LECTURES

* Access satellite data
like MODIS, Landsat
in your VM

* Access historical and
projected climate
data

+ Populate data based
on public demand

Build your own VM
or use pre-built ones
Access on-demand
computing

Demos for hands-on
labs

Design concepts and
solutions to enable
climate resilience
Build web or mobile
applications

Win prizes

Live lectures from
climate and remote
sensing experts
Access to pre-
recorded lectures
Invite and Share




WHY IS SCALING IMPORTANT ?

Low
Barrier of
Entry

Data On- Open
Open discovery demand Resources
science and scalable (Labs &
explore computing Tutorials)

(Instant
Access)

nex.nasa.gov/opennex




OPENNEX NEW FEATURES




OpenNEX Stack

FRONT END BACK END

P Compute Networking
¥ s
Microsoft* 2 . ECZ w VCP
SQLServer If Lambda t Route 53

= 8

WEB PLATFORM css 18 W Storage App Services

= '] : i s3 & sas
B BE & EFS (¥ ses

- %= CloudFront & APl Gateway

jauervy Database Deploy & Mgmt

: € DynamoDB CloudFormation
o RS — ¥ ElastiCache CodeCommit

Leaflet #.

_ NINg .
frramazon @@ NASA OpenNEX 2015
"% webservices™ e



WEB PLATFORM

What data are available?

- How to interface the data in the cloud?

How to build Apps?
How to perform analytics?

ek R R R R R R, LABT LAB2 LAB3 R R Rl R R R T

=l. . p=o &

|




OpenNEX User Features

= Wide variety of Lectures/Courses categorized by
topics

=  Playlists — User can create their own Playlists
based on their taste

= History — User can access all the lectures they
have watched earlier

= Progress Tracking — User can resume partially
watched lectures from where they left

5 5
&i’ 4
s (/L/:/ nex.nasa.gov/opennex



New courses

Search / Auto-suggestions




NASA NEX DCP-30

US Temperature Maximums RCP'A'747:5.V

VANCOUVER «
.

,'H_.\“

AHUA «

e

By 33 e
HOUSTON «

Step 1: Use toolbar to place a | Step 2 : Explore chart
point or draw a rectangle

Step 3: Use &* to adjust map

and chart parameters

HAVANA*

January 2006 %




berkeley.edu keyword search

January 2070

NASA NEX DCP-30 T anuary 2070

US Temperature Maximums RCP 6.0

oD on

Time series X

I ’ g 0/".‘ Step 1: Use toolbar to place a | Step 2 : Explore chart Step 3 : Us
1 r draw a rectangle and chart
> /) @ charty Model: Ensemble Average Scenario: RCP 6.0




Set an alerts to get
relevant content notifications

Search & explore a live index of

geospatial data Save your searches Arrange finds into collections

@ ExcHanGe Temperature il W saved Searche llections  J" Alert

Time filte B ]l O Search Within Polygon Search Within Map Area
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w
2y \ igeria
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and private SeaWiFs Level-3 b gy
. 2 " South
data in one peo
Argentina
system
Mapbox © OpenStreetiMap Improve this map

@) PLANET OS

Data Discovery



Very High Resolution Satellite Image
Classification

Showcasing NEX Projects

-  NASA Carbon Monitoring System (CMS) NAIP
Data Application

- NASA Advanced Information Systems
Technology (AIST) Program Application



NAIP — Deriving Tree-cover from 1-m Imagery for CONUS. @’

Need for Big

330,000 Computation

Scenes

60 Terabytes of Big Data

Images

7000x7000
Images

Images fed in parallel
to cores in HPC

Current End-to-end Processing Time (California with 11,000 scenes) -> 48 hours



Problem and Motivation

Quality of data affected by data Significant inter-class overlaps
acquisition, pre-processing and and often hard to distinguish
filtering. between classes.

Tree cover delineation
is a hard problem

Need to harness strong Accuracy of present algorithms is low and
discriminative features and there is a pressing need to create high
efficient learning algorithm. resolution land cover maps.

— _J
Iz

We create a learning framework by combining unsupervised
segmentation and deep learning based classification which
produces state-of-the-art results.



NAIP Processing Architecture

—==> HIGH GRAIN PARALLELISM

EACH IMAGE FED IN
PARALLEL TO A SEPARATE
CORE IN HPC

UPDATE TRAINING
DATASET

SEGMENTATION
(USING STATISTICAL
REGION MERGING)

OUTPUT
IMAGE

EXTRACT CLASSIFICA'I:ION
FEATURE (Deep Belief
VECTORS REEROK]

FINE GRAIN PARALLELISM
EACH INPUT IMAGE SLICED
AND FED IN PARALLEL TO

HPC MODULES

HPC Module 1

HPC Module 2 m
HPC Module 3 34 [:Je] NASA Earth Exchange High Performance Computing (HPC)

NASA Earth Exchange Storage




msgs
data _'-‘
l Hephcates

;
| AWS VPC[1]
:

Subnet vpc1-a Subnet vpcl-b

p—
-

! a
n Spot Instances Spot Instances
AV Zone a AV Zone b

Process activity
Dynamo DB
(Key / Value store)

Spot Instances
AV Zone ¢

Data / Tools
Catalogue

c:mucl host

National Agriculture Imagery Program (NAIP) Example

Configure a base set of AWS
services to build the processing
pipeline

Process ~15,000 Scenes
« ~5000 x 5000 pixels / scene

Leveraged Spot Instances
« 70% savings

« Managed services
* Spinup, process, tear
down in 1 week.

More that just computing...



1 tile = 200MB

Total Number of tiles for US/year: 330,000
Input Volume: 65TB/year

Number of years: All future years
Reprocessing: Initially quarterly

Final Product Release: Annual

1.0
Data Acquisition
(USB transfer over
network from within

Disk
Storage

Requirements

2.0
Segmentation
/ SRM

3.0
Feature
Extraction

Classification +
Voting

5.0
Evaluation/

Training Data

Runtime:

Memory: 6GB/tile
Quality improvement
with larger memory

Runtime:

Memory: 5GB/tile
Quality improvement
with larger memory

Runtime:

Memory: 6-8GB/tile
Quality improvement
with larger memory

Runtime:
Memory: 1GB/tile




Segmentation

"4

.

A segment can be considered to be any
region having pixels with uniform spectral
characteristics

What is a segment?

N

-
e
b :
>
[ 4
™
‘t‘-;’. i

e

To cluster together similar looking image
patches




Segmentation using SRM algorithm

Over-segmentation
Each segment ideally
contains regions belonging
to a single class, no inter-
class overlap

Under-segmentation
Creates inter-class overlap
within a segment

Input Iage



NAIP Feature Extraction Process

1 2" Moment H Standard Deviation

I CCM 2" Moment v Mean I

d
S CCM 2" Moment Viean NIR

VI Covariance
NIR Standard Deviation

Multiple Features extracted from the Input Image



Learning

Supervised

learning

Unsupervised Deep Belief Network Initialize Feedforward
> with Restricted —_— Backpropagation
pre-training Boltzmann Machine weights Neural Network

layer-wise

Input Feature Vector




Learning

Unsupervised Learning using Deep
Belief Network:

O Unsupervised pre-training using a Deep Belief Network (DBN) where each
layer is trained using a Restricted Boltzmann Machine (RBM)

0 The weights of the DBN are used to initialize the corresponding weights of
the Neural Network

O A Neural Network initialized in this manner converges much faster than an
otherwise uninitialized Neural Network

0 Unsupervised pre-training is an important step in solving a prediction problem
with petabytes of data with high variability



Restricted Boltzmann Machines

« Consists of 1 visible layer Hidden units
and 1 hidden layer. /\
* No connectivity between @\ ,@
. . \BZK/
hidden units. LSRN
* Hidden units are o °
conditionally independent A

Visible units

given the visible states.



Energy of the Joint Configuration

binary state of binary state of
visible unit i hidden unit j

\ /

Energy with configuration weight between
v on the visible units and units i and j

h on the hidden units



Energy of the Joint Configuration (contd.)

The energy of the joint configuration gives the following gradient with respect
to the weight vector

_IE(v,h)

Bwl.j

v.h.

L J

Each possible joint configuration of the vectors v and h has a corresponding
energy.

The energy of a joint configuration determines its probability

(v, h) O e—E(V,h)



The Maximum Likelihood (ML) Learning for
RBM
Start with the training vector clamped to the visible units.

Then we alternately update all the hidden units in parallel followed by all the visible units in
parallel and so on.

This continues till the model distribution reaches its equilibrium value.

The maximum likelihood learning rule can be formally written as follows:

dlog p(v)

awi]-

0

= <vh;> —<vl-hj>OO



The Maximum Likelihood (ML) Learning for
RBM (contd.)

oD
<v;/1;>

t = infinity

1

Equilibrium
distribution



The Contrastive Divergence Learning for
RBM - the faster alternative to ML

Start with the training vector clamped to the visible units.

Then we update all the hidden units in parallel followed by all the visible units in parallel
and finally all the hidden units.

So, unlike the maximum likelihood learning rule, the Contrastive Divergence learning
algorithm runs the Gibbs sampling for just 1 step.

The Contrastive Diveraence learnina rille can be formallv written as follows:

0 I
Aw;; = & (<vih;> —<v;h;>")



The Contrastive Divergence Learning for
RBM - the faster alternative to ML

rea__ O DO
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Fixed @ O Fixed @ O

ter =0 iter =1
(data) (reconstruction)




Learning

Deep Belief Network:

L Each layer is conditionally independent of the other

L DBN can be trained layer-wise by iteratively maximizing the conditional
probability of the input vectors or visible vectors given the hidden vectors and
a particular set of layer weights

L A DBN trained layer-wise with RBM can help in improving the variational
lower bound on the probability of the training data under the composite
learning model



Learning

Supervised Learning using Artificial
Neural Network:

QFully connected Feed-forward backpropagation neural network

One input layer with 26 input neurons, three hidden layers each having 100
neurons and one output layer having one neuron. ,

o(t) = tanh(t) = l
QActivation function: tansigmoid (tanhyperoT c§



Neural Network (contd.)

UWeights and biases initialized using: Deep Belief Network
UPerformance function: mean squared error (mse)

Training:
UIn the training phase around 100,000 training samples are chosen

L Chosen randomly from a multitude of scenes having various kinds of tree-
cover like urban, dense, fragmented etc.

Testing:
QTesting involves using the trained model to generate classification maps for
satellite images from the dataset on the fly.



Training Phase
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Testing/Prediction Phase
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Experimental Results

Total scenes processed = 11095 for the whole of California

e

Total samples 12000 12000 12000 36000

Tree samples 6000 6000 6000 18000
1:;’;55: 6000 6000 6000 18000

True Positive
Rate (%) 85.87 88.26 73.65

False positive
Rate (%) 2.21 0.99 1.98



Comparison with National Land Cover
Data (NLCD) Algorithm

Fragmented Forests:

Total samples 1000 1000
Tree samples 500 500
Non-tree samples 500 500

True Positive Rate (%)

False positive Rate (%)
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Yield Prediction using
Deep Belief Network



A Sample Yield Map
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Part of a LANDSAT ftile The resulting Yield Map



Field Level Yield Prediction from High Res
Imagery (WV-2)




Challenges for Yield Prediction

* Labeled training yield data is limited.

* The sample mean and standard deviations of the collected training data
samples are often quite different from that of the population mean and
standard deviation and hence training and test data can often represent
different probability distributions.

 The amount of training data available is not enough to encode the complex
higher order relationships between the various spectral bands, climate

variables and the corresponding yield values.



Advantage of the Deep Belief Network
based Learning Framework

* Since labeled training data is limited, we have to resort to Unsupervised
Learning.

* Deep Belief Networks use unlabeled data in the first phase. Since, there
are ample amounts of unlabeled data, the unsupervised learning phase is
able to initialize the weights and biases of the Neural Network to a global

error basin.

* Because the neural network is initialized to a global error basin, in the
supervised learning phase, it requires very little training data which is well
suited for our purposes since we already have limited training data.

 DBN provides the most powerful and state-of-the-art learning framework
to address these problems.



SUMMARY

« NEX lowers the barrier of entry (co-locating data, model codes, and
compute resources), allows knowledge sharing and provides a
platform for prototyping and scaling applications

« Earth Sciences = Big Data <=> Machine Learning = Intelligent
Information/ Prediction/ Estimation, etc. => Applications

« Machine Learning is great but understanding the “data” is critical.

« Scale and generalize learning models such that they are applicable to
different domains — e.g. land image classification technique to ocean
chlorophyll abundance and/or species classification.
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