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Selected SDS Lab Members’ Research 

Increasing spatial variability in 
Indian rainfall extremes 

Increasing intensity and 
uncertainty in heatwaves 

Persistence of cold extremes 
under climate change 

2009 2011 2012 

Ganguly et al. 2009 

Kodra et al. 2011 

Ghosh et al. 2012 



Now: Putting a bunch of ideas together 
Statistically significant change in 30 

year return levels (mm/day) 
estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Opportunity to use known physics, statistical models, and observed 
data to quantify (and reduce??) uncertainty in rainfall extremes 

Tebaldi et al. 2004 & 2005 

Pall et al. 2007 

O’Gorman et al. 2009 

Min et al. 2011 

Hall and Qu 2006 
Fasullo and Trenberth 2012 



Physics Infused Statistical  
Uncertainty Quantification Statistically significant change in 30 

year return levels (mm/day) 
estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

What processes dictate rainfall extremes? 
 
• Vertical wind velocity 
• Horizontal moisture convergence 
• Moist adiabatic temperature lapse rate 
• Saturation vapor pressure  Local mean air 

temperature when extremes occur 
 

• Idea: weight ESMs by which ones get the link between 
temperature and rainfall extremes right… let the 
unknown and unmeasured fall into uncertainty terms 

Modeled and measured 
well 
Modeled and measured 
less well 



Physics Infused Statistical  
Uncertainty Quantification Statistically significant change in 30 

year return levels (mm/day) 
estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 
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Example deviations from the 
August-Roche-Magnus , where h=1 

is the original August-Roche-
Magnus .  
  

Measuring ESM reliability: realism in portraying adherence to Clausius-Clapeyron Scaling 

A (potentially generalized) linear 
regression relationship– with some 
unknown parameters – that can be 
mapped back to nonlinear 
deviations from CC scaling 

The original August-Roche-
Magnus approximation to the 
CC… 

A log transformation… 

A statistical mechanism to 
encapsulate a basic physical 
process – and the rest falling 
into an error term  

intercept slope error 



But will this link tell us anything useful? 

We might want something like this… 

In CONUS Observations: Processes 
that dictate rainfall extremes differ 
across seasons 

Pearson’s ρ (seasonal maxima 
rainfall total, same day average 

temperature, 1915-2011) 

• Which ESMs capture these patterns?  
• And do they say something different 

about thee future? 
 

Hints that this approach might be useful in 
constraining uncertainty 
 Variability by region 
 Variability by season 
Host of additional considerations… 
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Applying the idea in a UQ Framework 
Statistically significant change in 30 

year return levels (mm/day) 
estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Historical simulation from 
ESM j at location r  

Historical observation 
from dataset k at location r  

Projection from GCM j at 
location r, conditioned on GCM 
j’s historical simulation 

Hk,r  

Hj,r  

Pj,r | Hj,r  
 

ln[Hr]  ≅ μr ≅ lr + (δr)Xr 

ln[Pj,r | Hj,r] ≅ μ’j,r≅ lr + {(δ’j,r+ δ’r)Yr- β[(δj,r+δr) Xr]} 

δ Regression coefficients relating 
Xr  and Yr to central tendency of 
log transformed rainfall 
extremes.  

Weight assignment:  
f (δr,  δj,r, δ’j,r) 

Weights should decay as GCMs fall further from “true” nature of adherence to 
real CC scaling described by δr (but not necessarily from theoretical CC scaling)  
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Historical temperature and 
future at location r (in reality 
uncertain) 

Xr , Yr  
 

 GLMs for location parameters in a GEV or GPD 
model to be updated in a recursive MCMC 
algorithm 

 Use concepts of skill and consensus (e.g. Tebaldi 
et al. 2004 and Smith et al. 2009) 
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2013: Model-data driven insights 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

Statistically significant change in 30 
year return levels (mm/day) 

estimated on 30 year moving blocks 

Statistically significant change in 
100 year return levels (mm/day) 

estimated on 30 year blocks 

a)	Winter	Minima	

c)	Summer	Minima	

b)	Winter	Maxima	

d)	Summer	Maxima	
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a)	Winter	Minima	

c)	Summer	Minima	

b)	Winter	Maxima	

d)	Summer	Maxima	
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Almost unanimous that the global 
PDF will change asymmetrically – 
especially for winter and minimum 
temperature based extremes 

Asymmetry measured as 
Δ in quantiles here 

nhex, winter minima 
 

shex, winter minima 
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EVT and resampling: Statistical 
tools for hypothesis testing 

CMIP5 model ensemble generally projects larger changes in the 
highest than the lowest statistics of temperature extremes  
 
Covariates describing asymmetry:  
season >> tail >> latitude band >> GCM variability 

Kodra et al. 2013 


