regionalClimateInformatics

Douglas Nychka,

National Center for Atmospheric Research

National Science Foundation

Evanston, August, 2013

Credits

- Steve Sain, Tamra Greasby, NCAR
- Dorit Hammerling, SAMSI
- Soutir Bandyopadhyay, Lehigh
- Finn Lindgren, U Bath, UK
- James Gattiker, LANL

Outline

- Regional Climate simulation and NARCCAP
- A tool for spatial analysis.
- Changes in the seasonality for future climate

Spatial data:

Given n pairs of observations (x_i, y_i) , $i = 1, \ldots, n$

$$y_i = g(x_i) + \epsilon_i$$

 ϵ_i 's are random errors and g is an unknown, smooth realization of a Gaussian process.

Estimate g(x)

Quantify the uncertainty of the estimate ...

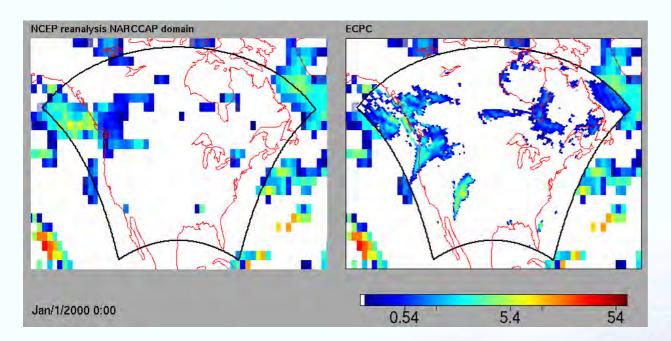
Statistical perspective: You need a model!

A climate model grid box (?)

An approach to Regional Climate

• Nest a fine-scale weather model in part of a global model's domain.

Regional model simulates higher resolution weather based on the global model for boundary values and fluxes.

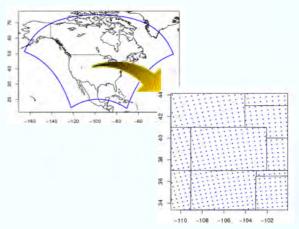


A snapshot from the 3-dimensional RSM3 model (right) forced by global observations (left)

 Consider different combinations of global and regional models to characterize model uncertainty.

NARCCAP – the design

4GCMS × 6RCMs: 12 runs – balanced half fraction design Global observations × 6RCMs X High resolution global atmosphere



GLOBAL FORCING	REGIONAL MODELS						
	MM5I	WRF	HADRM	REGCM	RSM	CRCM	time slice
GFDL			•	•	Ο		X
HADCM3	0		•		•		
CCSM	•						X
CGCM3				•			
Reanalysis					•	•	

A designed experiment is amenable to a statistical analysis and can contain more information.

But just 2-d temperatures fields are 72Gb of data.

Climate change

How will the seasonal cycle for temperature change in the future?

The goals:

- Estimate g(x) based on the observations
- Quantify the uncertainty in the estimate.
- Handle larger spatial data sets in a interactive mode

 $\{\Phi_j\}$: *m* basis functions

$$g(x) = \sum_{j} \Phi_j(x) c_j$$

A linear model: $y = \Phi c + \epsilon$

Random effects: $c \sim MN(0, \rho P)$ and $\epsilon \sim MN(0, \sigma^2 I)$

Key ideas for large data sets

- Inverse of *P* chosen to be sparse.
- Basis functions have compact support.
- Still have a useful spatial model!

The estimate

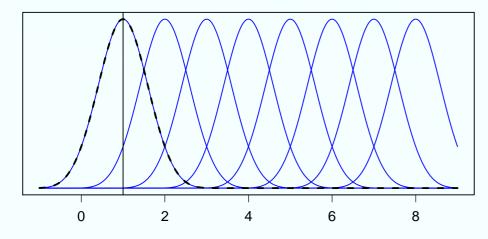
Find c by:

Ridge regression/ conditional expectation/BLUE/ Posterior mean

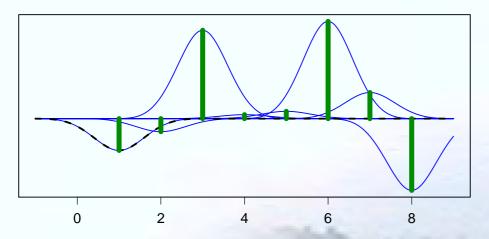
$$\hat{g}(x) = E[g(x)|y, P] = \sum_{k=1}^{n} \hat{c}_k \Phi_k(x)$$
$$\hat{c} = \left(\Phi^T \Phi + \lambda P^{-1}\right)^{-1} \Phi^T y, \quad \lambda = \sigma^2 / \rho$$

 Φ^T , $\Phi^T \Phi$, P^{-1} are sparse.

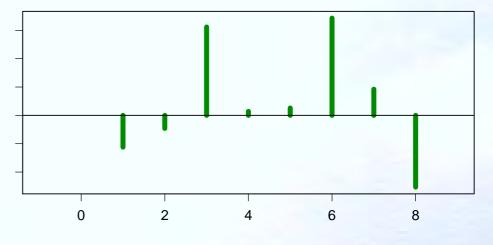
A 1-d cartoon ...



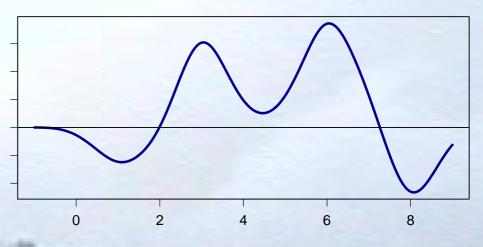
weighted basis



8 (random) weights

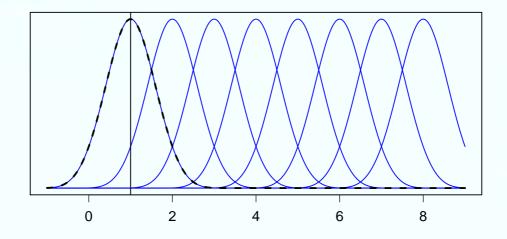


Random curve

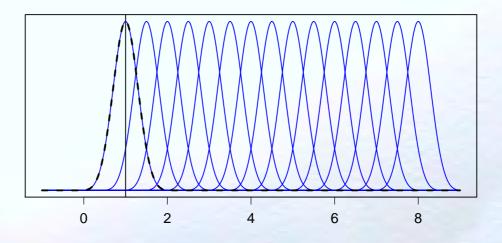


A Multiresolution

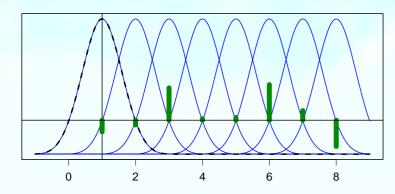
8 basis functions

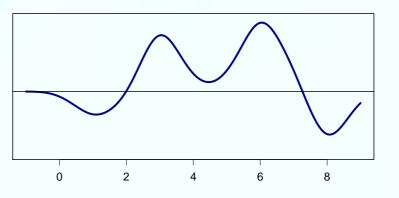


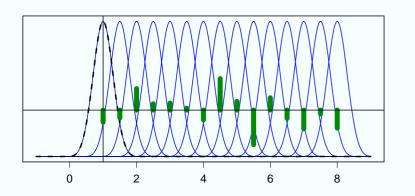
16 basis functions

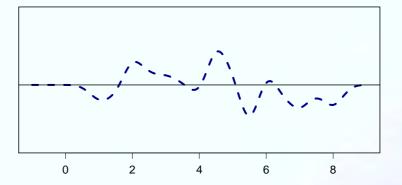


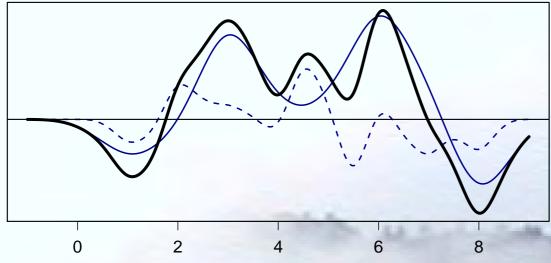
Adding them up











A recipe for P^{-1} Recall: $g(x) = \sum_j \Phi_j(x)c_j$

c at each resolution level is a Markov random field:

$$(4 + \kappa^2)c_j - \sum_{l \in \mathcal{N}} c_l = e_j, \qquad Hc = e$$

 $\{e_i\}$ are uncorrelated N(0,1) and \mathcal{N} is 4 nearest neighbors.

Weights in lattice format:

.
$$-1$$
 .
-1 $(4 + \kappa^2)$ -1
. -1 .

Precision matrix for c is sparse: $P = (H^T H)^{-1}$

Back to climate data

Climate change

How will the seasonal cycle for temperature change in the future?

g(x,t) = Change in mean temperature at location x and at t in the year.

Back to NARCCAP

- A 2 × 2 subset of NARCCAP (4 global/regional combinations) (1971- 2000), (2040-2071) A2 scenario.
- (Future Present) seasonal cycle expand in 4 principle components ... gives 4 coefficient spatial fields for each model.
- Approximately 8000 spatial locations

difference in seasonal cycle:

$$g(x,t) = a_1(x)\Gamma_1(t) + \dots + a_4(x)\Gamma_4(t)$$

Principle Components/EOFs: $\Gamma_1, ..., \Gamma_4$

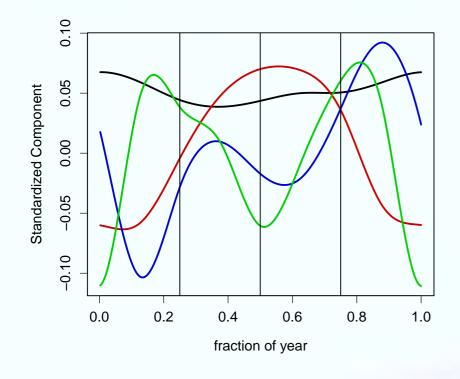
Amplitudes/coefficients: *a*₁,...,*a*₄

• There are four spatial fields to estimate.

More on the representation

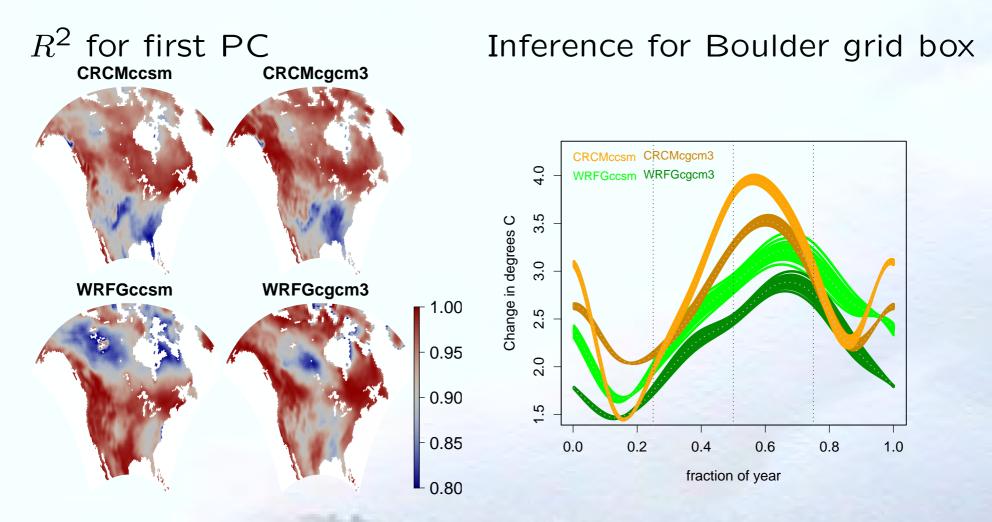
Seasonal PCs (future - present) $\Gamma_1, ..., \Gamma_4$

NARCCAP region Domain for $a_1, ..., a_4$



Results

- Thin plate spline model (1 level $120 \times 55 \approx 6000$ basis functions)
- λ found by MLE (equivalent to sill and nugget)
- Conditional simulation of fields (facilitates nonlinear statistics)



Summary

• Computational efficiency gained by compact basis functions and sparse precision matrix.

• Flexibility in model to account for nonstationary spatial dependence.

• Multi-resolution can approximate standard covariance families (e.g. Matern)

See LatticeKrig package in R

Thank you!

