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Introduction

I Climate models are deterministic, mathematical descriptions of the physics
of climate.

I Confidence in predictions of future climate is increased if the physics are
verifiably correct.

I A necessary (but not sufficient) condition is that past and present climate
be simulated well.

I Quantify the likelihood that a (summary statistic computed from a) set of
observations arises from a physical system with the characteristics
expressed by a model-generated time series.
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Introduction

If the atmosphere behaves as the model specifies, then we would expect the
observations to look like the model output to within the inherent variability of the
model output.

Observations: Y0 =
(
Y01, . . . ,Y0N0

)′.
Output of model j : Yj =

(
Yj1, . . . ,YjNj

)′.
Statistic: g(·): g(Y0) = g0, g(Yj ) = gj .

Estimate the sampling distribution of gj by
resampling.

Sampling distribution of the 
median, location [35N,235E]

Likelihood of observing g0 given model j sampling distribution is a figure of
merit.
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Introduction

I Let A = j be the event that model j best represents the physical system.

I Let g0 = g(Y0) be a statistic computed from the time series of
observations.

I Let f (x |A = j) be the sampling distribution (density) of that statistic given
A = j .

I f (g0|A = j) is the likelihood of g0 given A = j .

I P(A = j|g0) ∝ f (g0|A = j)P(A = j).

5



Methodology
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Motivating application/previous efforts
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WDAC, Darmstadt, Germany, March 2013 

Duane Waliser (JPL), Peter Gleckler (PCMDI),  
Robert Ferraro (JPL), Karl Taylor (PCMDI), Joao Teixeira (JPL)  

NASA obs4MIPs Working Group 
NASA HQ (Tsengdar Lee and Jack Kaye) 

ESG development (Dean Williams, Luca Cinquini, Dan Crichton, etc.),  
Satellite mission teams (e.g. CERES, AIRS, TES, MLS, MODIS, OVWs, REMSS, AVISO, TRMM) 

:0+A<4%+$

I “Water vapor changes
represent the largest feedback
affecting climate sensitivity..."
(IPCC 2007).

I Coupled Model
Intercomparison Project
(CMIP5) produces simulations
from multiple models covering
the decade of the 2000’s
(“decadal experiments").

I We seek to evaluate the performance of various models’ daily simulations
of water vapor against satellite observations using an empirical likelihood
approach.
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Motivating application/previous efforts

I Earlier version of this work evaluated selected
CMIP3 water-vapor time series against AIRS
observations for two quartiles and the median
of their marginal distributions.

I There, we used a moving-block bootstrap to
simulate sampling distributions, but that was
computationally very slow.

I For a more comprehensive application to
CMIP5, we need a) statistics that are more
sensitive to time series structure, and b) a
faster way to generate sampling distributions.

Relative likelihood scores for 13 CMIP3 models 
and three statistics (Braverman, Cressie, and 
Teixeira, 2011).
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Motivating application

For this exercise:

I Four model runs from Institute Pierre Simon Laplace (IPSL) daily
simulations of water vapor at 500 hPa for January 1, 2001 through
December 31, 2010. Time series of length 3650 days (10 years, 365
days/year) in each of 22× 96 lat-lon grid cells (20S to 20N latitude).

I Six model runs from the Model for Interdisciplinary Research on Climate
(MIROC5) daily simulations of water vapor at 500 hPa for January 1, 2001
through December 31, 2010. Time series of length 3652 (10 years, 365
days/year plus leap days) days in each of 30× 256 lat-lon grid cells (20S to
20N latitude).

I Observations’ daily averages of water vapor at 500 hPa from NASA’s
Atmospheric Infrared Sounder (AIRS) from October 1, 2002 through
September 30, 2012 regridded twice to match the spatial resolution of the
two classes of models. Time series of length ≈ 3652.
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Methodology

I What g should we use?

I How to simulate the sampling distribution of g?

I How do we know our method works?
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Methodology

What g should we use?

I We need a statistic (or set of statistics) that capture(s) important structure
in a time series. The universal descriptor of time series structure is the
spectrum.

I Let Yj be a time series of length Nj , Yj =
(
Yj1, . . . ,YjNj

)′. Assume Nj is

even and let Φj =
(
φ1, . . . ,φ(Nj/2)−1

)
be a matrix for which the columns

are Fourier basis vectors, φk , k = 1, . . . , (Nj/2)− 1.

I Let αj be the projection of Yj onto the space spanned by Φj , αj = Φj
′Yj .

The set of real and imaginary coefficients in αj = (α1, . . . , α(Nj/2)−1),
αk = (ak + bk i), provide a complete description of the structure of Yj in
terms of Fourier basis functions.
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Methodology

I Drop the subscript j for the moment. There are too many α’s to use them
all, so we reduce α to five summary statistics: ω̄∗(p),
p = .05, .25, .50, .75, .95, whose definition follows.

I Let Î(ωk ) = |α̂(ωk )|2. Then Î(ω1), Î(ω2), . . . , Î(ω(Nj/2)−1), is the periodogram
of Yj . Now let Î(k)(ω∗k ) be the k th largest value of the periodogram
elements, and let ω∗k be the associated frequency. Find the largest value of
k such that ∑k

l=1 Î(k)(ω∗k )∑(Nj/2)−1
m=1 Î(m)(ω∗m)

≤ p; call this value k∗p .

I Finally, let

ω̄∗(p) =
1
I∗p

k∗p∑
m=1

ω∗m
[̂
I(m)(ω∗m)

]
, I∗p =

k∗p∑
m=1

Î(m)(ω∗m).
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Methodology

How to simulate the sampling distribution of g?

I “Wavestrapping": originally introduced by Percival, Sardy, and Davison
(2000). Our version is slightly different, but inspired by theirs.

I Idea:
I Perform a J-level wavelet decomposition of the time series. This

results in a set of approximation coefficients at level J, and detail
coefficients at levels 1, . . . , J (see next slide).

I Test approximation coefficients and all levels’ detail coefficients for
white noise. If white noise, bootstrap the coefficients. If not, don’t.

I Reconstruct pseudo-series from coefficients.

I Compute g from each pseudo-series and fit a kernel density estimate.
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Methodology

Wavestrapping:

If length >= 50 and 
white noise

Detail 
coefficients 1

Detail 
coefficients 2

Detail 
coefficients J

Approx 
coefficients J
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Fine
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No

If length >= 50 and 
white noise Bootstrap
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Approx 
coefficients J-1

If length >= 50 and 
white noise Bootstrap

Detail coefficients 
at level J-1Yes

No

Detail coefficients 
at level J

Approx 
coefficients at 

level J

Yj

Y⇤
j g(Y⇤j )
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Methodology

Wavestrapping issues:

I Experiments suggest that wavestrapping doesn’t work well if the data are
skewed. First-differencing tends to correct this and improve stationarity.

I Even so, wavestrapping can yield pseudo-series that don’t look like the
original. This may lead to sampling distributions that aren’t close to the true
sampling distribution of g. (See next slide.)

I Diagnostic: trust results only when the time series’ own value of g falls in
the central 95 percent of the wavestrapped distribution. This is the “95
percent rule".
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Methodology

The 95 percent rule:

g(Yjk) g(Yjk)

Y⇤jk1, . . . ,Y
⇤
jkB = B wavestrapped

realizations from Yjk .

g(Y⇤jk1), . . . , g(Y
⇤
jkB) �! wavestrapped

sampling distribution obtained

fromYjk .

Yj1, . . . ,YjK = K independent

realizations.

g(Yj1), . . . , g(YjK) �! sampling

distribution.
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Results

I MIROC5 model, specific humidity at 500 hPa, model run 1 (r1i1p1) scored
against AIRS using g = ω̄(.05).

I White cells are “disqualified" for failing the 95 percent rule (bottom), or
having no frequencies that account for 5 percent of the power (top).
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Results

MIROC5 r1i1p1

MIROC5 r3i1p1

MIROC5 r2i1p1
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Results

Remarks:

I We have only two models here, but for purposes of illustration we could
treat different ensemble members’ (e.g., r1i1p1, r2i1p1) output as if they
were output of different models.

I These are maps of raw empirical likelihood scores. They are difficult to
interpret as-is, and need to be converted to relative scores: for each grid
cell, divide the raw score by the maximum score across all “models".

I However, MIROC5 and IPSL are at different resolutions, and there are
many “missing" values. This calls for kriging to supply complete maps with
common grid points.

I Stay tuned...
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Conclusions (1)

I This method works very well for simple, synthetic time series (e.g., MA and
low-order AR– those experiments not shown here) models.

I Initial overall indications are that this method works to varying degrees on
complex (high-order AR) time series typical of climate model output, both
synthetic and real.

I This may be due to our choice of statistics (ω̄(·)), and issues with
wavestrapping methodology.

I The raw likelihood scores show reassuring geographic consistency, but are
difficult to interpret. Relative scores are needed. With multiple models at
different spatial resolutions and multiple realizations of each, many
questions remain about how to combine and compute relative scores.

I It is too early to conclude anything about the CMIP5 climate models
themselves, based on this work.
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Conclusions (2)

I There are two main ideas here: assessing consistency between output of a
deterministic model via empirical likelihood, and wavestrapping as a
mechanism for bootstrapping time series.

I The likelihood idea relies on a hypothesis testing framework, but
randomness is induced by simulation from climate model output time
series rather than sampling from the real world. Does this simulated
uncertainty really correspond to the errors climate models make
representing the real world?

I Is wavestrapping a good way to introduce this uncertainty? Is it better than
alternatives (e.g, moving-block bootstrap, TFT-bootstrap (Kirch and Politis,
2011))?

I How is this going to help the IPCC/climate modeling community?
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Implementation

Prepare time series:
remove monthly 

mean, normalize, 
take first differences.

Regrid AIRS data to 
spatial resolution of 

climate model and daily 
time step by simple 

averaging; change to 
model levels.

Grid cells  
20S to 20N 

latitude.
hus_day_IPSL-CM5A-LR_decadal2000_r1i1p1_20010101-20101231_50000Pa
hus_day_IPSL-CM5A-LR_decadal2000_r2i1p1_20010101-20101231_50000Pa
hus_day_IPSL-CM5A-LR_decadal2000_r3i1p1_20010101-20101231_50000Pa
hus_day_IPSL-CM5A-LR_decadal2000_r4i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r1i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r2i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r3i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r4i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r5i1p1_20010101-20101231_50000Pa
hus_day_MIROC5_decadal2000_r6i1p1_20010101-20101231_50000Pa

AIRS Level 2 h2ommr 
swath data, 

20021001-20120930 IPSL: 22 x 96
MIROC5: 30 x 256

IPSL: 96 x 96
MIROC5: 128 x 256

Yes

No
Stop

Score
Fit density to {g∗j }

g0

f ∗j (g0)

f ∗j

For each model grid cell 
time seriesCompute true

value of                 gj

If       in 
central 95%

gj

Compute      :       

 
{ω̄0(.05), ω̄0(.25), ω̄0(.50),

ω̄0(.75), ω̄0(.95)} .

g0

Estimate sampling 
distributions of       :

      

 

gj�
ω̄∗

j (.05), ω̄∗
j (.25),

ω̄∗
j (.50), ω̄∗

j (.75),

ω̄∗
j (.95)

�
.

I Yields five, 22× 96 spatial maps for IPSL (one for each g) for each of four
IPSL input data sets.

I Yields five, 30× 256 spatial maps for MIROC5 (one for each g) for each of
six MIROC5 input data sets.
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Implementation

Details 1: data preparation

Xjd = source j water vapor on day d ,

d = 1, 2, ... , Nj , j = 0, 1, ... , J ,

where J is the number of sources.

Yjd =
Xjd − X̄jm�

var(Xj)
, X̄jm =

1

Njm

�

d∈Djm

Xjd ,

Djm = the set of days in source j month m,

over all years, m = 1, 2, ... , 12,

Njm = |Djm|.
j = 0 ↔ AIRS, j = 1, ... , 10 ↔
ensemble members from two models:
IPSL (4), and MIROC5 (6).

Wjd = Yjd+1 − Yjd .

Time series shown here are IPSL, 
realization 1 for grid cell [0,180].

I We do not wish to test whether climate model output mean and variance
are consistent with AIRS, so standardize all time series.
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Implementation

Details 2: wavestrapping

I Wavelet decomposition performed on each first-differenced time series,
Wj , using J = 8 levels and the Haar wavelet basis in Matlab.

I Lejung-Box white-noise test performed on coefficients (whenever there are
at least 50 coefficients) at 0.05 level.

I Wavestrapped sampling distribution simulated with B = 500 trials. Kernel
density estimate fit to 500 g∗j values, and evaluated at gj and g0 using
Matlab’s interp1 function.

I Diagnostic test for whether to trust result requires that gj fall within the
central 95 percent of the wavestrapped sampling distribution of g derived
from Wj .

I Timing: wavestrapping to generate a sampling distribution with J = 8 and
B = 500 takes about 8 seconds on my MacBook Air.
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Results

MIROC5 r4i1p1

MIROC5 r6i1p1

MIROC5 r5i1p1
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Results

IPSL r1i1p1

IPSL r3i1p1

IPSL r2i1p1

IPSL r4i1p1
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A simulation study

How do we know our method works? Perform a simulation study.

I Choose five AR(p) models that: 1) are representative of climate model
output time series, and 2) are distinguishable from one another.

I Fit AR(p) models with p = 1, 11, 21, 31, . . . , 201 to all 30× 256 grid
cell time series for MIROC5 500hPa r1i1p1 output. Choose the best
fitting AR(p) using AIC.

I Choose five grid cells that are spatially diverse and for which the best
fitting AR models should be distinguishable.

I How do we know that five AR models associated with the five grid
cells should be distinguishable? Simulate K = 100 time series from
each of the five AR models, and compute ω̄k

j (q),
q = {.05, .25, .50, .75, .95}, j = 1, 2, 3, 4, 5 and k = 1, . . . ,K .

I Examine boxplots of the ω̄k
j (q) to determine which values of q lead to

ω̄k
j (q) values that ought to distinguish among the distributions.

I Now, let each AR model, j = 1, 2, 3, 4, 5, successively play the role of the
“true" model, and score all the models against the true model.
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A simulation study
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A simulation study
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A simulation study
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A simulation study
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Ĝ 100(j , j 0)

Ĝv
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A simulation study
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A simulation study

Synthetic models:

Discrete-time AR model:  A(z)y(t) = e(t)                    
                                                            
  A(z) = 1 - 0.8697 z^-1 + 0.2103 z^-2 - 0.09482 z^-3       
          + 0.06311 z^-4 - 0.03068 z^-5 - 0.001724 z^-6     
          + 0.01479 z^-7 - 0.0166 z^-8 - 0.002901 z^-9      
          + 0.02878 z^-10 - 0.07958 z^-11 + 0.06159 z^-12   
          - 0.03055 z^-13 + 0.0629 z^-14 - 0.04819 z^-15    
          + 0.00919 z^-16 + 0.01181 z^-17 + 0.006613 z^-18  
          - 0.01012 z^-19 - 0.007866 z^-20 + 0.02257 z^-21  
          - 0.007116 z^-22 + 0.01483 z^-23 - 0.01836 z^-24  
          - 0.007909 z^-25 + 0.01504 z^-26 - 0.01122 z^-27  
          - 0.01601 z^-28 - 0.0008788 z^-29 + 0.01156 z^-30 
          + 0.03504 z^-31 - 0.05372 z^-32 - 0.01407 z^-33   
          + 0.01914 z^-34 + 0.01553 z^-35 - 0.03193 z^-36   
          - 0.0421 z^-37 + 0.04482 z^-38 + 0.02292 z^-39    
          - 0.02216 z^-40 - 0.00727 z^-41 - 0.01076 z^-42   
          + 0.03132 z^-43 - 0.03072 z^-44 - 0.002662 z^-45  
          + 0.0217 z^-46 + 0.01244 z^-47 + 0.002948 z^-48   
          + 0.007417 z^-49 - 0.04761 z^-50 - 0.001807 z^-51 
          - 0.01111 z^-52 + 0.05184 z^-53 + 0.002367 z^-54  
          - 0.04631 z^-55 + 0.0411 z^-56 - 0.03142 z^-57    
          + 0.03263 z^-58 - 0.004381 z^-59 - 0.01737 z^-60  
                                     - 0.0003969 z^-61      

[-20,0]
Discrete-time AR model:  A(z)y(t) = e(t)               
                                                       
  A(z) = 1 - 0.9039 z^-1 + 0.2817 z^-2 - 0.08821 z^-3  
          + 0.001304 z^-4 + 0.0178 z^-5 - 0.02326 z^-6 
          - 0.01898 z^-7 + 0.02436 z^-8 - 0.04645 z^-9 
                     + 0.04858 z^-10 - 0.02563 z^-11   

[-13,45]

Discrete-time AR model:  A(z)y(t) = e(t)                 
                                                         
  A(z) = 1 - 0.939 z^-1 + 0.3254 z^-2 - 0.1156 z^-3      
          - 0.00398 z^-4 - 0.004228 z^-5 - 0.009052 z^-6 
          - 0.0128 z^-7 - 0.006564 z^-8 + 0.004539 z^-9  
                     - 0.01218 z^-10 - 0.02097 z^-11     

[-6,91]

Discrete-time AR model:  A(z)y(t) = e(t)                
                                                        
  A(z) = 1 - 0.9139 z^-1 + 0.3564 z^-2 - 0.1338 z^-3    
          + 0.03928 z^-4 + 0.01054 z^-5 - 0.01363 z^-6  
          + 0.003495 z^-7 + 0.02252 z^-8 - 0.04506 z^-9 
                    + 0.01921 z^-10 - 0.001184 z^-11    

[1,138]

Discrete-time AR model:  A(z)y(t) = e(t)                
                                                        
  A(z) = 1 - 0.7658 z^-1 + 0.2778 z^-2 - 0.2191 z^-3    
          + 0.02208 z^-4 + 0.05671 z^-5 - 0.05538 z^-6  
          - 0.01158 z^-7 + 0.005982 z^-8 - 0.01589 z^-9 
                    + 0.008379 z^-10 - 0.02543 z^-11    

[8,183]
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I Boxplots don’t
entirely explain
which models are
distinguishable.
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