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Normal probability density function
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Normal quantile

Standard Normal Distribution 
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Probability range
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Normal quantile
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Univariate quantile mapping
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Univariate quantile mapping:formula

Q(a) = arg minE {|X − q|+ (2a− 1)(X − q)} ,
FX (Q(a)) = a.

so a↔ Q(a) is a bijection. This is extremely important for doing
Statistics.
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A transformation
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Univariate quantiles
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Univariate quantiles:formula

Q(a) = arg minE {|X − q|+ (2a− 1)(X − q)}

Define

u = 2a− 1,
Q(u) = arg minE {|X − q|+ u(X − q)}
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Bivariate quantiles: domain
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Bivariate quantiles: range
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Bivariate quantiles
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Generalized spatial quantiles

For every λ ∈ R, the generalized spatial quantiles minimize:

Ψuλ(q) = E
[
|XU − qU |

{
1 + λ(XU − qU)−2||XU⊥ − qU⊥ ||2

}1/2

+β(XU − qU)] .

Further generalization (not pursued): For every k ≥ 1, define

Ψuλk (q) = E
[
|XU − qU |

{
1 + λ(XU − qU)−k ||XU⊥ − qU⊥ ||k

}1/k

+β(XU − qU)] .
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Properties of generalized spatial quantiles

Generalized spatial quantiles minimize:

Ψuλ(q) = E
[
|XU − qU |

{
1 + λ(XU − qU)−2||XU⊥ − qU⊥ ||2

}1/2
+ β(XU − qU)

]
.

Theorem

Write Ψuλ(·) = Ef (X , ·). Let g(X , ·) be the subgradient of f (X , ·), q∗ the
unique minimizer of Ψuλ(·), and qn a minimizer of its sample version.

1 qn → q∗ almost surely as n→∞.
2 If E||g(X ,q∗)||2 <∞ and if Ef (X ,q) is twice continuously

differentiable at q∗ with the second derivative H being positive
definite, then as n→∞

n1/2(qn − q∗) = −n−1/2H−1Sn + oP(1),

where Sn =
∑n

i=1 g(Xi ,q∗).
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Generalized bootstrap of generalized spatial quantiles

Theorem

1 Under the conditions of the previous item, the generalized
bootstrap approximation for the distribution of n1/2(qn − q∗) is
consistent, and hence resampling may be used for statistical
inference.
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Bahadur representation of generalized spatial quantiles

Theorem
1 In addition to the conditions of the previous Theorem, assume that

|| ∂
∂q

EΨu,λ(X , q) − ∂2

∂q2 EΨu,λ(X , q∗)(q − q∗)||

= O(||q − q∗||(3+s)/2) as q → q∗,

E||g(X , q)− g(X , q∗)||2 = O(||q − q∗||1+s) as q → q∗,

E||g(X , q)||r < ∞ as q → q∗,

for some s ∈ (0,1) and r > (8 + p(1 + s))/(1− s). Then the
following asymptotic Bahadur-type representation holds with
probability 1:

n1/2(qn − q∗) = −n−1/2H−1Sn + O(n−(1+s)/4(log n)1/2(log log n)(1+s)/4)

as n→∞.
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Projection quantiles

Generalized spatial quantiles minimize:

Ψuλ(q) = E
[
|XU − qU |

{
1 + λ(XU − qU)−2||XU⊥ − qU⊥ ||2

}1/2
+ β(XU − qU)

]
.

Set λ = 0 to get projection quantiles.

Theorem
Projection quantiles have a one-to-one relationship with the unit ball,
like univariate quantiles.

Computationally extremely simple, no limitations from sample size
and dimension (high p, low n allowed).
Projection quantiles based confidence sets have exact coverage.
For any λ, we now have asymptotic results as β → 1. This
provides a potentially new way of doing multivariate extreme
values.
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Applications: climate and beyond

We have used some of these techniques to study joint extreme
value properties of climate variables, eg, hurricane windspeed and
pressure.
We have used these to study change in tail behavior of climate
characteristics.
We are studying multivariate (extreme) quantile regression.
Study relations between climate and economic or biological
variables.
Other application domains might be in finance, genomics, ldots.

Ansu Chatterjee (U. Minnesota) Multivariate quantiles August 15, 2013 19 / 22



Hurricane dynamics

Example
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Figure : Physics, linear and quadratic statistical fits for bivariate extremes data
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Hurricane dynamics

Example
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Figure : Bivariate extremes: projections
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