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Normal probability density function

Standard Normal Distribution
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Normal quantile

Standard Normal Distribution

Q(0.9)=1.68

Support gf Distn_ ¢ AT
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Probability range

Probabilities

0.0 0.2 0.4 0.6 0.8 1.0
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Normal quantile

Support of Distn
Q(0.9)=1.68
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Univariate quantile mapping

Probabilities
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Support of Distn
Q(0.9)=1.68
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Univariate quantile mapping:formula

Q(a) = argminE{|X—q|+ (2a—1)(X—-9q)},
Fx(Q(a)) = a

so a «» Q(a) is a bijection. This is extremely important for doing
Statistics.
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A transformation

Probabilities U(a)=2a—1

0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -05 0.0 05 1.0

U(Probability)=2 Probability — 1
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Univariate quantiles

Probabilities = a U(a)=2a—-1

0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -05 0.0 05 1.0

Support of Distn
Q(0.9)=1.68
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Univariate quantiles:formula

Q(a) =argminE{|X —qg|+ (2a—1)(X —q)}
Define

u = 2a—1,
Q(u) = argminE{|X — q| + u(X — q)}
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Bivariate quantiles: domain

Domain
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Bivariate quantiles: range

Support of Distn

-4 -2 2 4

Ansu Chatterjee (U. Minnesota) Multivariate quantiles August 15, 2013 12/22



Bivariate quantiles

Domain

Support of Distn
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Generalized spatial quantiles

For every )\ € R, the generalized spatial quantiles minimize:

1/2
Vi@ = | 1Xo - aul {14 A0 - qu) EX - e )
+B(Xu — qu)].-

Further generalization (not pursued): For every k > 1, define

1/k
V@) = B |1X0 - qul {1420 - ) “1Xes - que )
+B(Xu — qu)].-
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Properties of generalized spatial quantiles

Generalized spatial quantiles minimize:

V@ = E|IXo - aol {14 A0 - @) s que I} 4 500 - )]

Write W5 () = Ef(X,-). Let g(X, ) be the subgradient of f(X,-), g* the
unique minimizer of W ,,(+), and g, a minimizer of its sample version.

@ g, — g* almost surely as n — .

Q IfE||g(X, g")||? < oo and if Ef(X, q) is twice continuously
differentiable at g* with the second derivative H being positive
definite, then as n — oo

n'2(gn— q*) = —n~"2H71S, + 0p(1),

where S, = >, 9(Xi, q*).
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Generalized bootstrap of generalized spatial quantiles

@ Under the conditions of the previous item, the generalized
bootstrap approximation for the distribution of n'/?(q, — q*) is
consistent, and hence resampling may be used for statistical
inference.
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Bahadur representation of generalized spatial quantiles

@ /n addition to the conditions of the previous Theorem, assume that

82
a—quwu,A(X, a’)(q—q)ll
= O(lg—q'|[®*9?) asq — g,
Ellg(X,q) —g(X,q")I? = O(lg—q*|'""*)asq— q",
Ellg(X,q)l" < occasq—q,
for some s € (0,1) andr > (8 + p(1+ s))/(1 — s). Then the

following asymptotic Bahadur-type representation holds with
probability 1:

0
H%E\Ilu,,\(X, q -

n1/2(qn _ q*) _ _n71/2H71Sn + O(n7(1+s)/4(log n)1/2(|og |Og n)(1+s)/4)

as n — oo.
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Projection quantiles

Generalized spatial quantiles minimize:

5 > 1/2
Via(q) = E[|xu—qu\{1+x(xu—qu) s = aue P} + 80 — au)]

Set A = 0 to get projection quantiles.

Projection quantiles have a one-to-one relationship with the unit ball,
like univariate quantiles.

@ Computationally extremely simple, no limitations from sample size
and dimension (high p, low n allowed).

@ Projection quantiles based confidence sets have exact coverage.

@ For any A\, we now have asymptotic results as 5 — 1. This
provides a potentially new way of doing multivariate extreme
values.
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Applications: climate and beyond

@ We have used some of these techniques to study joint extreme
value properties of climate variables, eg, hurricane windspeed and
pressure.

@ We have used these to study change in tail behavior of climate
characteristics.

@ We are studying multivariate (extreme) quantile regression.

@ Study relations between climate and economic or biological
variables.

@ Other application domains might be in finance, genomics, /dots.
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Hurricane dynamics

Linear Model Summary Polynomial Model Summary
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Figure : Physics, linear and quadratic statistical fits for bivariate extremes data

v

Ansu Chatterjee (U. Minnesota) Multivariate quantiles August 15, 2013 20/22



Hurricane dynamics

Linear Models Predicted vs. Actual Values for 2009-2011 Quadratic Models Predicted vs. Actual Values for 2009-2011
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Figure : Bivariate extremes: projections
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