Quantiles and data-depth: the next generation

Snigdhansu Chatterjee

School of Statistics, University of Minnesota

August 15, 2013

Ansu Chatterjee (U. Minnesota)

Multivariate quantiles

Normal probability density function

Standard Normal Distribution

Standard Normal Distribution

Univariate quantile mapping

$$Q(a) = \arg \min \mathbb{E} \{ |X - q| + (2a - 1)(X - q) \},\$$

 $F_X(Q(a)) = a.$

so $a \leftrightarrow Q(a)$ is a bijection. This is extremely important for doing Statistics.

U(Probability)=2 Probability - 1

Ansu Chatterjee (U. Minnesota)

Univariate quantiles

$$Q(a) = \arg\min \mathbb{E}\left\{|X-q| + (2a-1)(X-q)\right\}$$

Define

$$u = 2a - 1,$$

 $Q(u) = \arg \min \mathbb{E} \{ |X - q| + u(X - q) \}$

Bivariate quantiles: domain

Bivariate quantiles: range

Ansu Chatterjee (U. Minnesota)

Bivariate quantiles

For every $\lambda \in \mathbb{R}$, the generalized spatial quantiles minimize:

$$egin{array}{rcl} \Psi_{u\lambda}(q) &=& \mathbb{E}\left[|X_U-q_U|\left\{1+\lambda(X_U-q_U)^{-2}||X_{U^{\perp}}-q_{U^{\perp}}||^2
ight\}^{1/2} \ &+eta(X_U-q_U)]\,. \end{array}$$

Further generalization (not pursued): For every $k \ge 1$, define

$$egin{array}{rcl} \Psi_{u\lambda k}(q) &= & \mathbb{E}\left[|X_U-q_U|\left\{1+\lambda(X_U-q_U)^{-k}||X_{U^{\perp}}-q_{U^{\perp}}||^k
ight\}^{1/k} \ &+eta(X_U-q_U)]\,. \end{array}$$

Generalized spatial quantiles minimize:

$$\Psi_{u\lambda}(q) \quad = \quad \mathbb{E}\left[|X_U - q_U| \left\{ 1 + \lambda (X_U - q_U)^{-2} ||X_{U^\perp} - q_{U^\perp}||^2
ight\}^{1/2} + eta(X_U - q_U)
ight].$$

Theorem

Write $\Psi_{u\lambda}(\cdot) = \mathbb{E}f(X, \cdot)$. Let $g(X, \cdot)$ be the subgradient of $f(X, \cdot)$, q^* the unique minimizer of $\Psi_{u\lambda}(\cdot)$, and q_n a minimizer of its sample version.

)
$$q_n
ightarrow q^*$$
 almost surely as $n
ightarrow \infty$.

If E||g(X, q*)||² < ∞ and if Ef(X, q) is twice continuously differentiable at q* with the second derivative H being positive definite, then as n → ∞</p>

$$n^{1/2}(q_n-q^*)=-n^{-1/2}H^{-1}S_n+o_P(1),$$

where $S_n = \sum_{i=1}^n g(X_i, q^*)$.

Theorem

Under the conditions of the previous item, the generalized bootstrap approximation for the distribution of n^{1/2}(q_n - q^{*}) is consistent, and hence resampling may be used for statistical inference.

Theorem

In addition to the conditions of the previous Theorem, assume that

$$\begin{split} ||\frac{\partial}{\partial q} \mathbb{E}\Psi_{u,\lambda}(X,q) &- \frac{\partial^2}{\partial q^2} \mathbb{E}\Psi_{u,\lambda}(X,q^*)(q-q^*)|| \\ &= O(||q-q^*||^{(3+s)/2}) \text{ as } q \to q^*, \\ \mathbb{E}||g(X,q) - g(X,q^*)||^2 &= O(||q-q^*||^{1+s}) \text{ as } q \to q^*, \\ \mathbb{E}||g(X,q)||^r &< \infty \text{ as } q \to q^*, \end{split}$$

for some $s \in (0, 1)$ and r > (8 + p(1 + s))/(1 - s). Then the following asymptotic Bahadur-type representation holds with probability 1:

$$n^{1/2}(q_n - q^*) = -n^{-1/2}H^{-1}S_n + O(n^{-(1+s)/4}(\log n)^{1/2}(\log \log n)^{(1+s)/4})$$

as $n \to \infty$.

Generalized spatial quantiles minimize:

$$\Psi_{u\lambda}(q) = \mathbb{E}\left[|X_U - q_U| \left\{1 + \lambda (X_U - q_U)^{-2} ||X_{U^{\perp}} - q_{U^{\perp}}||^2
ight\}^{1/2} + eta(X_U - q_U)
ight].$$

Set $\lambda = 0$ to get projection quantiles.

Theorem

Projection quantiles have a one-to-one relationship with the unit ball, like univariate quantiles.

- Computationally extremely simple, no limitations from sample size and dimension (high *p*, low *n* allowed).
- Projection quantiles based confidence sets have exact coverage.
- For any λ, we now have asymptotic results as β → 1. This provides a potentially new way of doing multivariate extreme values.

Ansu Chatterjee (U. Minnesota)

- We have used some of these techniques to study *joint extreme value properties* of climate variables, eg, hurricane windspeed and pressure.
- We have used these to study *change in tail behavior* of climate characteristics.
- We are studying multivariate (extreme) quantile regression.
- Study relations between climate and economic or biological variables.
- Other application domains might be in finance, genomics, *ldots*.

Hurricane dynamics

Example

Polynomial Model Summary

Figure : Physics, linear and quadratic statistical fits for bivariate extremes data

Ansu Chatterjee (U. Minnesota)

Multivariate guantiles

August 15, 2013 20/22

Hurricane dynamics

Example

Figure : Bivariate extremes: projections

Ansu Chatterjee (U. Minnesota)

Multivariate quantiles

- This research is partially supported by the National Science Foundation under grant # IIS-1029711 and # SES-0851705.
- This research is partially supported by the Institute on the Environment (IonE), U. Minnesota.
- This research is partially supported by a grant from the College of Liberal Arts (CLA), U. Minnesota.
- Thanks to colleagues Partha Lahiri, Karen Monsen, Nitai Mukhopadhyay, and students Emily Koenke, Hao Ren, Abhishek Nandy, Heng Zhang, Ying Lu, Sen Yuan, Megan Hyman, Lindsey Deitz.