Discovering Persistent Change Windows (PCW) in Spatiotemporal Climate Datasets

Stefan Liess

Peter K. Snyder

3rd Annual Workshop of NSF Expeditions in Computing: Understanding Climate Change: A Data Driven Approach. Evanston, IL, August 15th-16th, 2013 Sponsor: NSF CISE/EIA

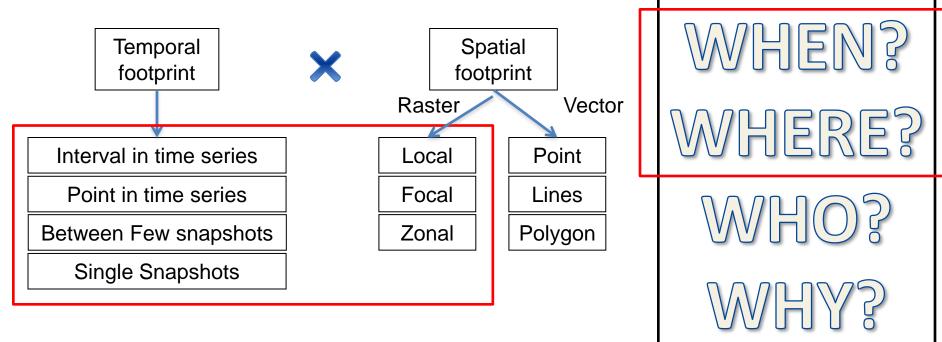
Change Windows

- **Time-Window of Change**, e.g., interesting interval in <u>a</u> time series
- **Space-window of Change (**e.g., Region or Sub-path **):**

Desertification

Deforestation

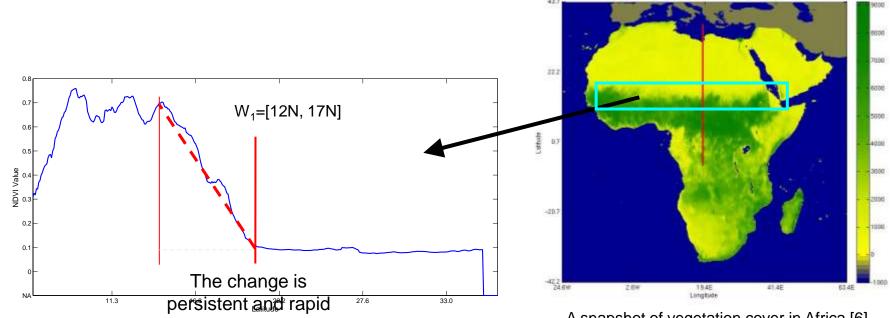
Urban sprawl


Spatio-Temporal Window of Change:

Irrigation in Saudi Arabia (Google Time Lapse[5])

Spatiotemporal (ST) footprint of changes

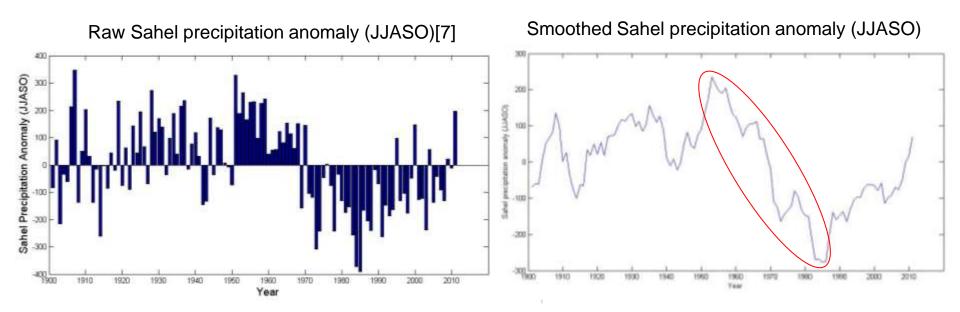
- "Where" and "when" a change occurs?
- A taxonomy of ST change footprint:



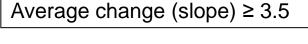
Spatiotemporal change footprint (raster)

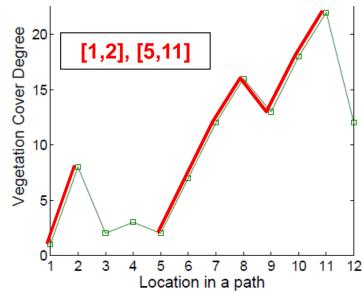
		Temporal				
		Snapshot	Few Snapshots	Time series (point)	Time series (interval)	Time series collections
Spatial	Zonal Focal Local					

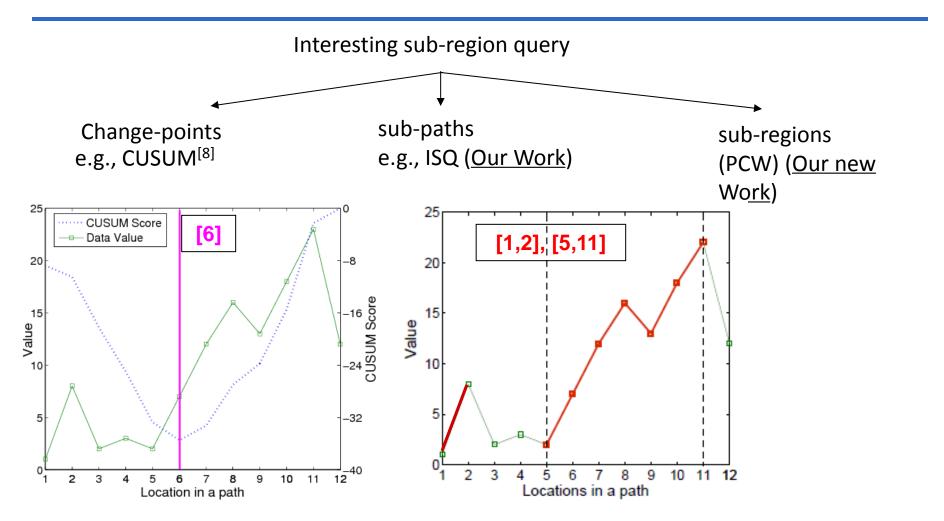
Spatial Sub-path of Change


- Spatial footprint of Change
 - Ex. Sahel sharp change in vegetation cover
 - Transition between ecological zones (ecotones)
 - Vulnerable to climate change

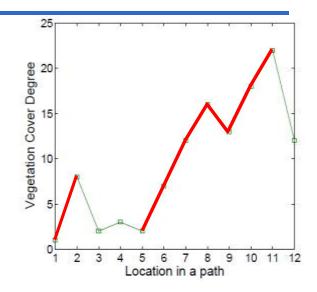
stand after latitudinal smoothing () degree scale)


Temporal Sub-path of Change


- Time footprint of Change
 - Abrupt shift in precipitation, temperature, etc.
 - Climate change detection.


Computer Sc. Problem: Interesting Sub-path Query (ISQ)

- Input
 - A statistical interest measure & thresholds.
 - A path and its attribute
- Output
 - All dominant interesting sub-path
- Constraints
 - Correctness & completeness
 - Automation & scalability to large datasets
 - Algebraic Interest Measure, e.g., average slope



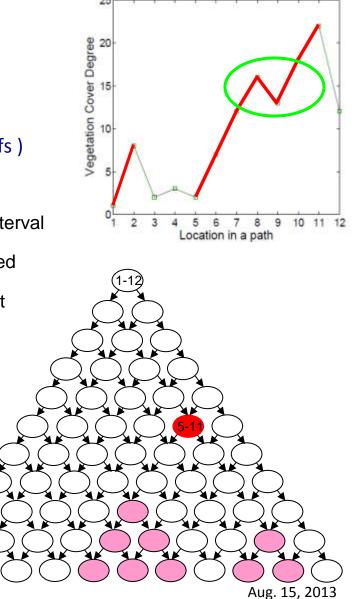
Related Work, Its Limitations, Novelty of Our Approach

Naive Approach does not scale!

Naive approach

Phase 1: Evaluate interest measure for all O(N²) sub-intervals Phase 2: Identify dominant sub-paths (compare sub-path pairs)

Complexity: O(n⁴) for a path,


where n = number of locations on the path

Example: Find intervals of high gradient along all longitudes using 0.07 degree resolution dataset => 10³ locations per path, 10² longitudes, =>10¹⁴ computations

Window footprint	1-D (path)	2-D (spatial)	3-D (spatiotemporal)
# locations	10 ³	106	109
# windows	10 ⁸	1012	1018
computation	1014	10 ²⁴	10 ³⁶
Search spaces	O(n ²)	O(n ⁴)	O(n ⁶)

Computational Structure of ISQ

Not Dynamic Programming! Vegetation Cover Degree **GRID-DAG** (Directed Acyclic Graph) Node = sub-paths • Edge = Dominance relationship ٠ Interest Measure (node) = f (leftmost & rightmost leafs) Q? Which traversal order avoids unnecessary work? 6 Start location Valid interval 11 12 5 10 2 3 4 1 Dominated Dominant **Dominated** by 10 11

1

2

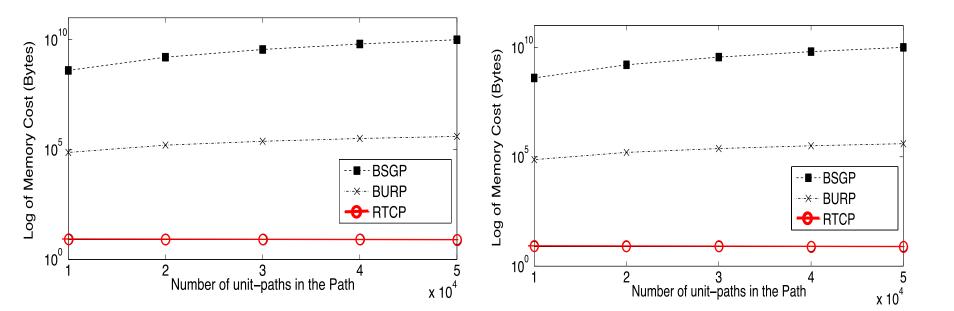
3

9

12

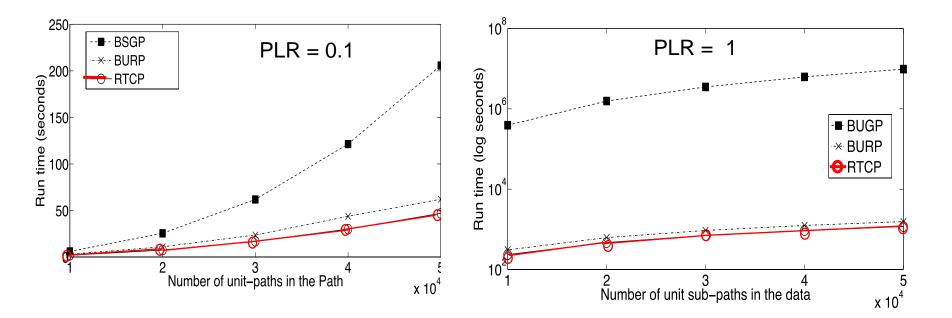
A Comparison of Techniques for Traversing G-DAG

	DFS or BFS	Bottom-Up with in-Row Pruning (BURP)	BFS with Sub- Graph Pruning (BSGP)
A: Avoid Redundant leaf visits	No	Yes	Yes
B: Avoid Unnecessary visits to dominated non-leafs	No	No	Yes
C: Memory need for B (n = number of locations in path)	O(n ²)	O(n)	O(n ²)
 Insights: Interest measure is a algeb Dominance = partial order The partial order is a Grid-I O(1) memory traversal & p via row-wise scan (of non-I 	among su DAG => runing		

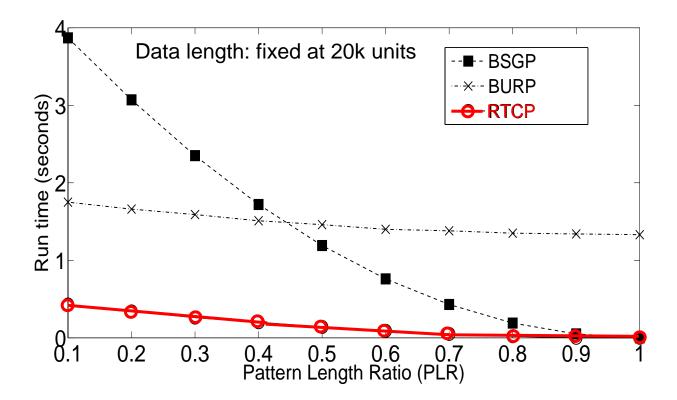

Aug. 15, 2013

Theoretical and Experimental Evaluations

- Theoretical Evaluation:
 - RTCP is Correct and Complete
 - Correct: All the reported sub-paths are qualifying dominant sub-paths
 - Complete: All the dominant interesting sub-paths are reported
- Experimental Evaluation
 - RTCP is faster than competitions
 - RTCP needs less memory than competition


Effect of Dataset Size on Memory Needs

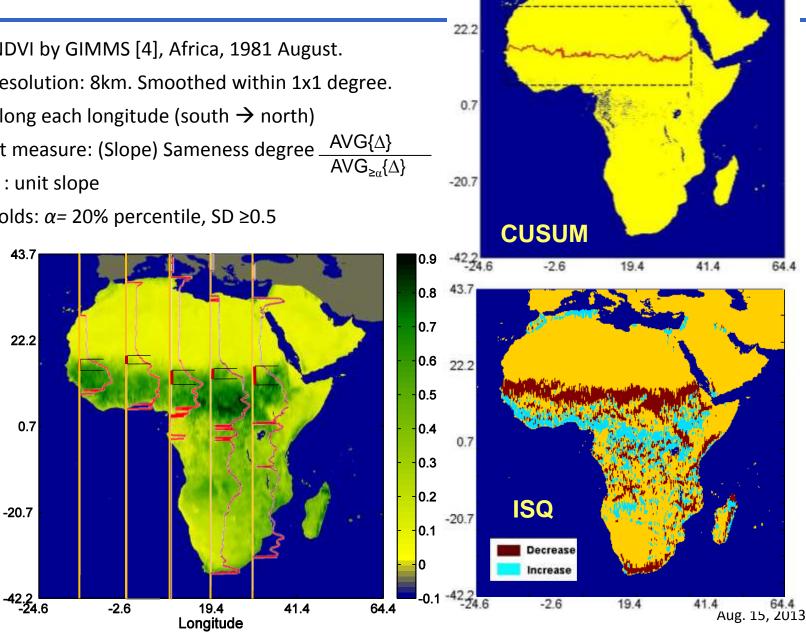
- Setup: Pattern length ratio (PLR) is fixed at 0.1
 Dataset synthetic (left), real (right)
- Trends: RTCP has smaller memory cost than competitions
 - Memory cost are not sensitive to pattern length ratio


Effect of Data Size on Computational Cost

- Setup:
 - Data: GFDL-CM2.0 coupled model realization (1861-2000, entire world)
 - Global weighted average of max daily temperature
 - Data length: 51100 :: Pattern Length Ration (PLR) = either 0.1 or 1
 - Note difference in scale across 2 plots
- Trends: RTCP is faster than competitions

Effect of Pattern Length

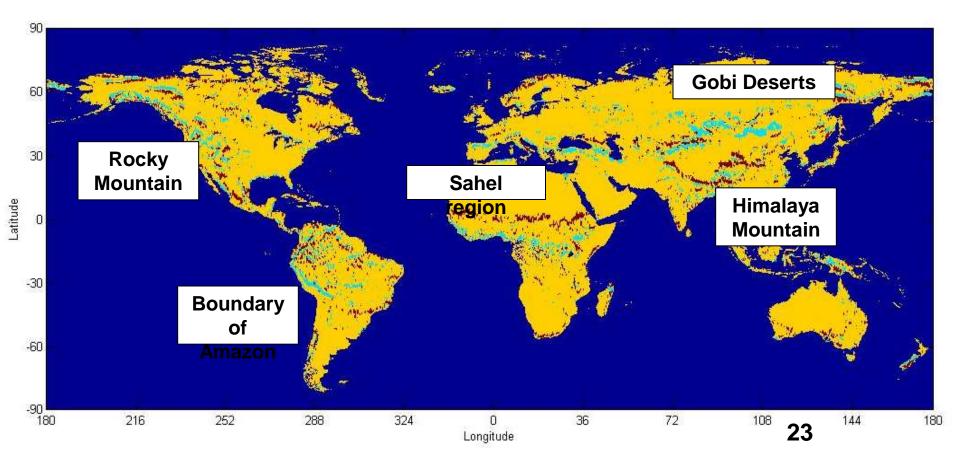
- Pattern Length Ratio =
 - Ratio of length of longest interesting sub-path and the length of the entire path,
 - between 0 and 1.
- Synthetic data: generated with Gaussian distributed unit values.
- Trend: RTCP is faster than competitions with any pattern length


Case Study

- Data: NDVI by GIMMS [4], Africa, 1981 August.
 - Resolution: 8km. Smoothed within 1x1 degree.
- Path: along each longitude (south \rightarrow north)
- Interest measure: (Slope) Sameness degree
 - Δ : unit slope

Latitude

Slide 22


Thresholds: α = 20% percentile, SD ≥0.5

43.7

Case Study: Global Data and Ecotones

- NDVI of the entire world
- Aug 1-15 1981, 0.07 degree (8km) resolution
- a = 10%, **SD** ≥ 0.5

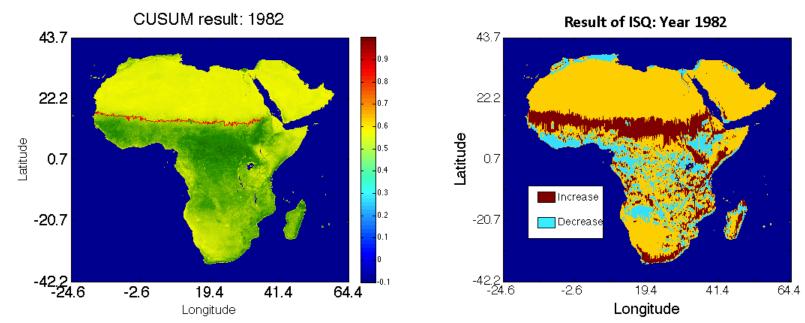
Contributions : Summary

- Formalize Interesting Sub-path Query (ISQ) problem
- Computational structure of efficient 1D interval enumeration
 - Grid-DAG traversal strategy
 - Bottom-up with in-row pruning (BURP) ^{1,} BFS with sub-graph pruning (BSGP)²
 - <u>Row-wise with column-pruning (RTCP)³</u>
- Evaluation : Experiments, Case Studies
- Next Steps
 - GPU platform
 - Efficient 3D region enumeration
 - submitted to ACMGIS 2013.
 - Visit poster session for details

	1-D (path)	2-D (spatial)	3-D (spatio- temporal)
# locations	10 ³	10 ⁶	10 ⁹
# windows	10 ⁸	1012	10 ¹⁸
computation	1014	10 ²⁴	10 ³⁶
Search spaces	O(n ²)	O(n ⁴)	O(n ⁶)

¹ From our early work: J. Kang, et al, Discovering Flow Anomalies: A SWEET Approach. In IEEE conference on Data Mining (ICDM 2008).

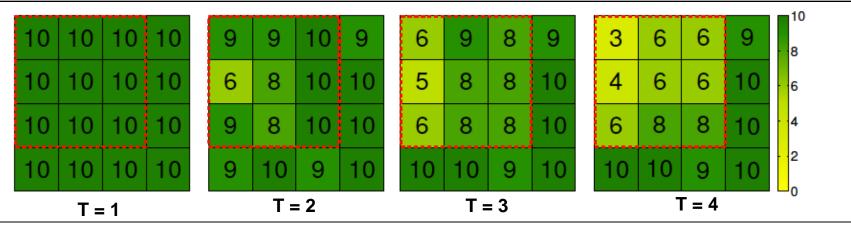
² Published in ACM SIGSPATIAL GIS 2011.


³ Manuscript to be submitted to IEEE Transaction on Knowledge and Data Engineering (TKDE).

Accelerating ISQ with GPUs – Preliminary Results

- Motivation: Google Time-lapse like visualization of spatio-temporal change windows
 - Example: GIMMS NDVI
 - 611 snapshots (26 years every 16 days)
 - Africa, 8km resolution: 1152 pixels x 1152 pixels
- Initial results with BURP (Bottom-up with in-row pruning)
 - Setup: Platform: CUDA, 1 thread per longitude
 - Trend: 10x speedup with 1 GPU
 - CPU time (matlab): **240 s**econds / video
 - GPU/CUDA: 19 seconds / video
- Next steps:
 - More algorithms (e.g., RTCP), Platforms (e.g., multi-GPU), Datasets

Case Study


CUSUM (pre-selected area) vs. Proposed approach (a=20% quantile, SD = 0.5)

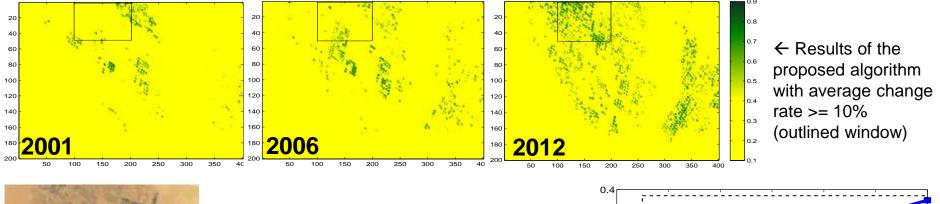
Persistent Change Window (PCW) Discovery: Problem

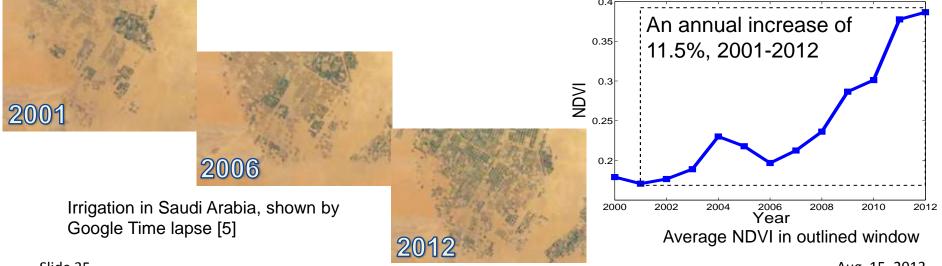
• Given:

- A spatial time series dataset
- An average change rate threshold
- A spatial aggregate function (e.g., sum, average)
- Find:
 - All the dominant persistent change windows {Si, Ti}
- Constraints
 - Correctness & completeness
 - Automation & scalability to large datasets

Highlighted (3x3) over Time [1,4]: Sum(T1) = 90, Sum(T4) = 53 Threshold = 15%Average decrease rate = [(90-53)/90]/3= 17.3%

Persistent Change Window (PCW) Discovery: Challenges




Persistent Change Window Discovery: Case Study

- Initial Results
 - Initial algorithms
 - Case Study: MODIS 250m NDVI data (16 days)
 - Time:2000-2012. Annual: July 27/28 of each year.

Study area

Contributors' Publications:

[1] Xun Zhou, Shashi Shekhar, Pradeep Mohan, Stefan Liess, Peter K. Snyder: Discovering interesting sub-paths in spatiotemporal datasets: a summary of results. GIS 2011: 44-53

(A full journal version to be submitted to IEEE Transection on Knowledge and Data Engineering)

- [2] Xun Zhou, Shashi Shekhar, Pradeep Mohan. Spatiotemporal (ST) Change Pattern Mining: A Multi disciplinary Perspective. In Book: Mei-Po Kwan, Douglas Richardson, Donggen Wang and Chenghu Zhou (eds) (2013) Space-Time Integration in Geography and GIScience: Research Frontiers in the US and China. Dordrecht: Springer (in Press)
- [3] Xun Zhou, Shashi Shekhar, Reem Y. Ali. Spatiotemporal (ST) Change Pattern Mining: A Multidisciplinary Perspective. Submitted to the Wiley's Interdisciplinary Review on Data Mining and Knowledge Discovery (DMKD).
- [4] Xun Zhou, Shashi Shekhar, Dev Oliver. Discovering Spatiotemporal (ST) Persistent Change Windows: A Summary of Results. Submitted to ACM SIG SPATIAL GIS 2013.

References:

- [5] Google Earth Engine (Accessed: June 22, 2013).
- [6] Tucker, C. J., J. E. Pinzon, M. E. Brown. Global inventory modeling and mapping studies. Global Land Cover Facility, University of Maryland, College Park, Maryland, 1981--2006.
- [7]. Joint Institute for the Study of the atmosphere and Ocean(JISAO). Sahel rainfall index. <u>http://jisao.washington.edu/data/sahel/</u>.
- [8] E. Page. Continuous inspection schemes. *Biometrika*, 41(1/2):100--115, 1954.

Google Time lapse

- Google Time lapse main page
- Irrigation in Saudi Arabia
- Amazon Deforestation