
Aug. 15, 2013 Slide 1  

Discovering Persistent Change Windows (PCW) in 
Spatiotemporal Climate Datasets 

3rd Annual Workshop of NSF Expeditions in Computing:  

Understanding Climate Change: A Data Driven Approach. 

Evanston, IL, August 15th-16th, 2013 

Sponsor: NSF CISE/EIA 

Shashi Shekhar 

Peter K. Snyder 

Joseph F. Knight 

Stefan Liess 
Students: 

 Xun Zhou 

 

 

 Zhe Jiang 



Aug. 15, 2013 Slide 2  

Change Windows 
 

• Time-Window of Change, e.g., interesting interval in a time series 

 

• Space-window of Change (e.g., Region or Sub-path ):  

 

 

 

 

 

 

 

• Spatio-Temporal Window of Change: 

 

 

 

Desertification Deforestation Urban sprawl 

2001 2006 2012 

Irrigation in Saudi Arabia (Google Time Lapse[5]) 
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Spatiotemporal (ST) footprint of changes 

• “Where” and “when” a change occurs?  

• A taxonomy of ST change footprint:  

Temporal 

footprint 

Interval in time series 

Point in time series 

Between Few snapshots 

Single Snapshots 

Spatial 

footprint 

Local 

Focal 

Zonal 

Point 

Lines 

Polygon 

Raster Vector 
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Spatiotemporal change footprint (raster) 
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Spatial Sub-path of Change 

• Spatial footprint of Change 

• Ex. Sahel – sharp change in vegetation cover 

• Transition between ecological zones (ecotones) 

• Vulnerable to climate change 

11.3 16.8 22.2 27.6 33.0
NA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Latitude

N
D

V
I 

V
a

lu
e

 

The change is 

persistent and rapid 

W1=[12N, 17N] 

A snapshot of vegetation cover in Africa [6] 
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Temporal Sub-path of Change 

• Time footprint of Change 

৹ Abrupt shift in precipitation, temperature, etc.  

৹ Climate change detection.  

 

Raw Sahel precipitation anomaly (JJASO)[7] Smoothed Sahel precipitation anomaly (JJASO) 
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Computer Sc. Problem: Interesting Sub-path Query (ISQ) 

• Input 

• A statistical interest measure & thresholds. 

• A path and its attribute  

• Output 

• All dominant interesting sub-path 

• Constraints 

• Correctness & completeness 

• Automation & scalability to large datasets 

• Algebraic Interest Measure,e.g., average slope  

Average change (slope) ≥ 3.5 

[1,2], [5,11] 
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Related Work, Its Limitations, Novelty of Our Approach 

Interesting sub-region query 

Change-points sub-paths 
e.g., ISQ (Our Work) e.g., CUSUM[8] 

sub-regions 
(PCW) (Our new 
Work)  

[1,2], [5,11] [6] 
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Naive Approach does not scale! 

Naive approach   

Phase 1: Evaluate interest measure for all  O(N2) sub-intervals 

Phase 2: Identify dominant sub-paths (compare sub-path pairs) 

 

Complexity:   O(n4) for a path,  

 where n = number of locations on the path 

 

Example: Find intervals of high gradient along all longitudes 

  using 0.07 degree resolution dataset 

  => 103 locations per path, 102 longitudes,  

  =>1014 computations 

Window 
footprint 

1-D 
(path) 

2-D (spatial) 3-D (spatiotemporal) 

# locations 103 106 109 

# windows 108 1012 1018 

computation 1014 1024 1036 

Search spaces O(n2) O(n4) O(n6) 
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Computational Structure of ISQ 

• Not Dynamic Programming! 

• GRID-DAG (Directed Acyclic Graph) 

• Node = sub-paths 

• Edge = Dominance relationship 

• Interest Measure (node) = f ( leftmost & rightmost leafs ) 

• Q? Which traversal order avoids unnecessary work? 
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Backup slides start here 
 
 
 
 
 
A Comparison of Techniques for Traversing G-DAG 

 
 
 
 
 
 

DFS or 
BFS 

Bottom-Up with 
in-Row Pruning 
(BURP) 

BFS with Sub-
Graph Pruning  
(BSGP) 

Row-Traversal with 
Column Pruning 
(RTCP) 

A: Avoid Redundant leaf visits No Yes Yes Yes 

B: Avoid Unnecessary visits to 
dominated non-leafs 

No No Yes Yes 

C: Memory need for B 
(n = number of locations in 
path) 

O(n2) O(n) O(n2) O(1) 

5-11 

1-2 

1-12 

Insights: 
• Interest measure is a algebraic function => leaf scan 
• Dominance = partial order among sub-paths => pruning 
• The partial order is a Grid-DAG  => 
 O(1) memory traversal & pruning 
 via row-wise scan (of non-leaf) 
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• Theoretical Evaluation:  

• RTCP is Correct and Complete 

• Correct: All the reported sub-paths are qualifying dominant sub-paths  

• Complete: All the dominant interesting sub-paths are reported 

• Experimental Evaluation 

• RTCP is faster than competitions  

• RTCP needs less memory than competition  

Theoretical and Experimental Evaluations 
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Effect of Dataset Size on Memory Needs 

• Setup: Pattern length ratio (PLR) is fixed at 0.1  

 Dataset –  synthetic (left), real (right) 

 

• Trends: RTCP has smaller memory cost than competitions 

• Memory cost are not sensitive to pattern length ratio 
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Effect of Data Size on Computational Cost 

• Setup: 

• Data: GFDL-CM2.0 coupled model realization (1861-2000, entire world) 

• Global weighted average of max daily temperature  

• Data length: 51100  :: Pattern Length Ration (PLR) = either 0.1 or 1 

• Note difference in scale across 2 plots 

• Trends: RTCP is faster than competitions 

RTC

P 

PLR = 0.1  PLR =  1 
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• Pattern Length Ratio =  

• Ratio of length of longest interesting sub-path and the length of the entire path,  

• between 0 and 1. 

• Synthetic data: generated with Gaussian distributed unit values. 

• Trend: RTCP is faster than competitions with any pattern length  

Effect of Pattern Length  
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Data length: fixed at 20k units 

RTCP 
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Case Study   

AVG{∆} 

AVG≥α{∆} 

• Data: NDVI by GIMMS [4], Africa, 1981 August.  

• Resolution: 8km. Smoothed within 1x1 degree. 

• Path: along each longitude (south  north) 

• Interest measure: (Slope) Sameness degree                      

• ∆ : unit slope  

• Thresholds: α= 20% percentile, SD ≥0.5 
CUSUM 

ISQ 
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Case Study: Global Data and Ecotones 

• NDVI of the entire world 

• Aug 1-15 1981, 0.07 degree (8km) resolution 

• a = 10%,  SD ≥ 0.5 

Sahel 

region 

Boundary 

of 

Amazon 

Rocky 

Mountain 
Himalaya 

Mountain 

Gobi Deserts 
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Contributions : Summary 

• Formalize Interesting Sub-path Query (ISQ) problem 

• Computational structure of efficient 1D interval enumeration 

• Grid-DAG traversal strategy 

• Bottom-up with in-row pruning (BURP) 1, BFS with sub-graph pruning (BSGP)2 

• Row-wise with column-pruning (RTCP)3 

• Evaluation : Experiments, Case Studies 

• Next Steps 

• GPU platform 

• Efficient 3D region enumeration 

• submitted to ACMGIS 2013. 

• Visit poster session for details   

 

1 From our early work:  J. Kang, et al, Discovering Flow Anomalies: A SWEET Approach. In IEEE  conference on Data Mining 

(ICDM 2008). 
2 Published in ACM SIGSPATIAL GIS 2011. 
3 Manuscript to be submitted to IEEE Transaction on Knowledge and Data Engineering (TKDE). 

1-D 
(path) 

2-D (spatial) 3-D (spatio-
temporal) 

# locations 103 106 109 

# windows 108 1012 1018 

computation 1014 1024 1036 

Search spaces O(n2) O(n4) O(n6) 



Aug. 15, 2013 Slide 27  

Accelerating ISQ with GPUs – Preliminary Results 

• Motivation: Google Time-lapse like visualization of spatio-temporal change windows 

• Example: GIMMS NDVI 

• 611 snapshots (26 years every 16 days) 

• Africa, 8km resolution: 1152 pixels x 1152 pixels 

 

 

• Initial results with BURP (Bottom-up with in-row pruning) 

• Setup: Platform: CUDA, 1 thread per longitude 

• Trend: 10x speedup with 1 GPU 

• CPU time (matlab): 240 seconds / video 

• GPU/CUDA: 19 seconds / video 

 

• Next steps: 
• More algorithms (e.g., RTCP), Platforms (e.g., multi-GPU), Datasets 

 

 

* Collaborated with Dr. S. Prasad et al. in Georgia State Univ.  Results submitted to CyberGIS AHM’13   
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Case Study   

CUSUM (pre-selected area) vs. Proposed approach (a=20% quantile, SD = 0.5) 
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Persistent Change Window (PCW) Discovery: Problem 

• Given： 

• A spatial time series dataset 

• An average change rate threshold 

• A spatial aggregate function (e.g., sum, average) 

• Find: 

• All the dominant persistent change windows {Si, Ti}  

• Constraints 

• Correctness & completeness 
• Automation & scalability to large datasets 

 

Highlighted (3x3) over Time [1,4]:  Sum(T1) = 90, Sum(T4) = 53 

Average decrease rate = [(90-53)/90]/3= 17.3% 

T = 1 T = 2 T = 3 T = 4 
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Persistent Change Window (PCW) Discovery: Challenges 

• A six-dimensional enumeration space 

• An interval along each dimension 
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Persistent Change Window Discovery: Case Study 

• Initial Results 
• Initial algorithms 

• Case Study: MODIS 250m NDVI data (16 days) 

• Time:2000-2012. Annual: July 27/28 of each year.  
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Irrigation in Saudi Arabia, shown by 

Google Time lapse [5] 
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Google Time lapse 

• Google Time lapse main page  

 

• Irrigation in Saudi Arabia 

 

• Amazon Deforestation  

http://earthengine.google.org/#intro
http://earthengine.google.org/#intro/SaudiArabiaIrrigation
http://earthengine.google.org/#intro/Amazon

