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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N
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Nino3.4 SST Anomaly (°C)

Mndél'-:l:_’redictinns of ENSO from Mar 2011
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@ Observations @ Predicted sum of natural and anthropogenic changes @ Predicted natural changes
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From Numerical Weather Prediction (NWP)
To Dynamical Seasonal Prediction (DSP) (1975-2004)

“Predictability in the midst of chaos”
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JFM Mean Rainfall Anomalies
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“Predictability
IN the Midst
Of Chaos”
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On the Time-Varying Trend in Global-Mean Surface Temperature

by Huang, Wu, Wallace, Smoliak, Chen, Tucker
EEMD: Ensemble Empirical Mode Decomposition; MDV: Multi Decadal Variability

Figure 4: Reconstruction of the raw GST time series (brown lines) using ST only

(red lines) and ST + MDV (green lines). Z
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Leadmg fPredlciabIe Component (APT):

Internal Multi-decadal Pattern (IMP)
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Dynamical Prediction Experience

Model predictability
depends on
model fidelity
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Hypothesis

Models that simulate climatology “better”
make better predictions.

Definition: Fidelity refers to the degree to which
the climatology of the forecasts (including the
mean and variance) matches the observed

climatology

I(ﬁ S Ci\'lﬁggicrias"tub?el —— P [ GE O(R) GE
= cera - VIASY N



Testing the Hypothesis: Data

I@ES

DEMETER Data

7 global coupled atmosphere-ocean
models

« 9 ensemble members

« 1980-2001 (22 years)

* Initial conditions: 1 February, 1 May, 1

August, 1 November

Integration length: 6 months
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Climate Model Fidelity and Predictability

Relative Entropy: The relative entropy between two distributions,
p,(X) and p,(x), is defined as

| )
Ri(pisps)= _[pl 100(} J dx (1)
rM %

where the integral is a multiple integral over the range of the M-
dimensional vector X.

Rovpo=tio| B Lr (s, om) S Lt 5 ) @

-~ ‘ k=1 =

where £ is the mean of p,(x) in the kth season, representing the
annual cycle, 2j is the covariance matrix of p;(x), assumed
iIndependent of season and based on seasonal anomalies. The
distribution of observed temperature is appropriately identified with p,,
and the distribution of model simulated temperature with p.,.
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" Fidelity vs. Skill

Fidelity vs. Skill
DEMETER 1980-2001
Seasonal Forecasts

7 models, 4 initial conditions
Lead Time = 0 months

Fidelity and Skill are
related.

Models with poor
climatology tend to have
poor skill.

Models with better
climatology tend to have
better skill.

Courtesy of Tim DelSole
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Climate Model Fidelity and Projections of Climate Change

J. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006
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Relative Entropy (Model Error in Simulating Current Climate)

Model sensitivity versus model relative entropy for 13 IPCC AR4 models. Sensitivity is defined as the surface air temperature
change over land at the time of doubling of CO,. Relative entropy is proportional to the model error in simulating current climate.
Estimates of the uncertainty in the sensitivity (based on the average standard deviation among ensemble members for those
models for which multiple realizations are available) are shown as vertical error bars. The line is a least-squares fit to the values.
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Bjorn Stevens, UCLA
World Modelling Summit, ECMWF, May 2008
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* 101-106 W/m2 (Wild et al., survey)
* 107 Wim2 (Trenberth and Kiehl (ERBE)
* 101 W/m2 (CERES)
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Examples of improved climate
simulation by global climate models
with higher numerical accuracy (high
resolution) and improved physics
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" Blocking Frequency

Black: Reanalysis (ERA); Red: T 159; Blue: T 1279 (ECMWEF)
(Higher Resolution Model Improves Simulation of Blocking Frequency)
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_L'Monsoon Rainfall in Low Resolution Model
(a) precipitation rate (b) Coupled model (2 degree)
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joon Rainfall in High Resolution Model
(b)
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Oouchi et al. 2009: (a) Observed and (b) simulated precipitation rate over the Indo-China
monsoon region as June-July-August average (in units of mm day -1). The observed
precipitation is from TRMM_3B42, and the simulation is for 7km-mesh run.
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Dynamical Seasonal Prediction
of Summer Monsoon Rainfall

After 50 years of climate modeling,
the current climate models can now produce
skillful prediction
of summer monsoon rainfall.



Sreat Famine of 1876-78 (India)
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Great Famine of 1876-78 (India)

All India Monsoon Rainfall: -29%
Drought Area. 670,000 km?
Estimated Deaths (Wikipedia): 5.5 — 8.2 million
Governance.

British Rule

(Lord Lytton exported food from India to England)

by Mike Davis

El Nino Famines and the Making of the Third World
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Dynamical Seasonal Prediction (DSP)

Source of predictability: Dynamical memory of atmos. IC
+ Boundary forcing (SST, SW, snow, sea ice)

DSP = NWP + IC of Ocean, Land, Atmosphere
— dynamically coupled and consistent IC
— Global ocean (especially upper ocean), sea ice (volume)
— Global Atmos. including stratosphere (IC)
— Global GHG (especially CO,, O,)
— Global land (soil moisture, vegetation, snow depth) IC

Tier 1: Fully coupled models (CGCM) to predict Boundary Forcing
Tier 2: Predict Boundary Forcing separately; use AGCM

(NWP=Atmos. IC + SST IC)
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Analysis of Variance: F as a measure of predictability
5 CGCMs, 46 years, 9 ensembles

Measure of predictability is

A2
F:E;—g
where
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For samples drawn independently from the same normal distribution, and
for Y =46 and E = 9, the 5% significance threshold of F is 1.40



F for 'E?egip' in ECMWF F for JJAS Precip in IFM-GEOMAR

% » Ik I

. i * F-values for JJAS
- precip. For 46-years
- and 9 ensemble
members the 5%
T T > T T - T T > T T - Significance iS F=1.4.

Gray color indicates

F for JJAS Precip in Meteo-France F for JJAS Precip in UK Met Office not statistically
significant at 95%
confidence interval.

F for JUAS Precip in Multi-model Anomaly
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-4<g;=-% ENSO has large amplitude after the monsoon season:
to predict monsoon, we must predict ENSO first
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Correlation Coefficient
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Correlation between NINO3 and All-India JJAS Rainfall
1880-2010
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Correlation between Observed and Predicted ISMR
1960-=-2005

Multimodel (46 years (1960-2005); Ens.=9)
CMCC-Bologna
——
: For 1960-2005 Obs,
_ CC (April Nino3, ISMR): -0.1
— _ CC (May Nino3, ISMR): —0.21

Cormralation

Correlation between observed and predicted JJAS all-India rainfall for hindcasts in the ENSEMBLES
data set for the period 1960-2005. All-India rainfall in dynamical models is defined as the total land

precipitation within 70E — 90E and 10N - 25N .
Last row shows empirical prediction using observed May NINO3.
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Correlation between Observed and Predicted NINO3
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Correlation between observed NINO3, and ensemble mean NINO3 predicted by the ENSEMBLES models, for
hindcasts in the period 1960-2005, as a function of calendar month. Also shown is the correlation between
observed NINO3 and the least squares prediction of NINO3 based on the observed May NINO3 value (thick
grey). The ‘x‘-symbols on the far right give the correlations between the observed and predicted JJAS

NINO3 index.



Correlation between Observed JJAS all India rainfall and Model NINO3
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Summary (monsoon prediction)

*Model’s ability to simulate SST and Q in West Pacific and
Indian Ocean are critical for accurate monsoon prediction.

*Predictability (Analysis of Variance, F test) calculation for 5
coupled model (“ENSEMBLES” Project) seasonal predictions
for 46 years, 9 member ensembles:

(ISMR is predictable at 95% significance)

*SKkill of coupled O-A models for predicting ISMR for 1960-
2005 is significant at 95%.

(Coupled O-A models for monsoon prediction is the future.)



Towards a Hypothetical “Perfect” Model

 Replicate the statistical properties of the past
observed climate
— Means, variances, covariances, and patterns of
covariability

« Utilize this model to estimate the limits of predicting
the sequential evolution of climate variability

« Better model — Better prediction (??)
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Seamless'_Prediction of Weather and Climate

From Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~): Ax~10-30Km
4. Cloud System Resolving Models (2000 ~):  Ax~3-5Km

Organized Cloud Mesoscale Synoptic Planetary
— —_— —_— —

Convection System System Scale Scale
Convectiv Climate
e — MJO — ENSO —
. Change
Heating
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Comment: Fbrum

physicsworld.com

A CERN for climate change?

Providing reliable predictions of
the climate requires substantial
increases in computing power.
Tim Palmer argues that itis time
for a multinational facility fit for
studying climate change

This winter has seen unprecedented levels
of travel chaos across Europe and the US. In
particular, the UK experienced the coldest
December temperatures on record, with
snow and ice causing many airports to close.
Indeed, George Osbourne, the UK’s Chan-
cellor of the Exchequer, attributed the coun-
try’s declining economy in the last quarter of
2010 to this bad weather. A perfectly sensi-
ble question to ask is whether this type of
weather will become more likely under cli-
mate change? Good question, but the trou-
ble is we do not know the answer with any
great confidence.

Trent Schindler, NASA/Goddard/UMBC

A global approach to a global problem Modelling the climate may require a unified strategy for computing.

In Physics World by Tim Palmer
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