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Extreme Weather Events are of Increasing Concern 
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Outline of the Problem 

• There is empirical evidence that extreme 
events are becoming more frequent, but 
there is no universal agreement that it is 
due to anthropogenic causes 

• The challenge is to quantify the 
anthropogenic contribution 

• A related problem is to quantify the extent 
to which extreme events may be expected 
to become more frequent in the future, 
regardless of causes (NRC Report on 
Climate and Social Stress, 2012) 
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Current Approaches 
• The most popular measure is fraction of attributable risk or FAR (Stott, 

Stone and Allen, 2004) 

• First we have to define an event of interest, e.g. a specific space-time 
average of temperature or precipitation above a threshold 

• Let P1 be the probability of this event under a model  that includes all 
known forcing factors, including anthropogenic; let P0 be the corresponding 
probability using natural forcings only 

• The FAR is defined to be 1-P0/P1. 

• Example for 2003 European heatwave: they estimated P1=1/250, 
P0=1/1000, so FAR=0.75. They also said it was “very likely” (confidence 
level at least 90%) that the FAR was at least 0.5. 

• I prefer to use risk ratio, RR=P1/P0, or its logarithm. 

• Several other approaches in the intervening years, but they are all 
somewhat questionable in their statistical assumptions. Pall et al. (2011) 
gave the most comprehensive approach to date, but it is very data 
intensive and assumed complete fidelity of model predictions to 
observations 

• This paper offers a new approach combining extreme value theory and 
hierarchical models 4 



Data 
• Observational data from CRU (Climate Research Unit, 

University of East Anglia, UK) – monthly averages on 5ox5o grid 
boxes, aggregated to JJA average anomalies over 
– Europe: spatial averages over 10oW-40oE, 30oN-50oN (2003 value was 

1.92K but 2012 almost the same) 

– Russia: spatial averages over 30oE-60oE, 45oN-65oN (2010 value 3.65K) 

– Central USA (including Texas and Oklahoma): spatial averages over 
90oW-105oW, 25oN-45oN (2011 value 2.01K) 

• Climate model data from CMIP3 
– 14 climate models 

– Total of 64 control runs, 44 twentieth century runs, 34 future 
projections under A2 scenario 

– Same spatial regions as observational data, converted to anomalies 
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Europe Summer Mean Temperatures 
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Russia Summer Mean Temperatures 
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Central USA Summer Mean Temperatures 
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Introduction To Extreme Value Theory 
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Europe Summer Mean Temperatures 
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Europe Summer Mean Temperatures With Trend 
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Russia Summer Mean Temperatures 
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Russia Summer Mean Temperatures With Trend 
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Central USA Summer Mean Temperatures 
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Central USA Summer Mean Temperatures With Trend 
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Bayesian Calculations 
• Focus on posterior distribution of binary log of threshold exceedance 

probability (BLOTEP) 

• Use models both with and without trends 

• Use 80th (solid curve), 75th (dashed) and 85th (dot-dashed) percentiles for 
thresholds 
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What’s Next? 
• Obvious strategy at this point is to rerun the GEV calculation on the model data 

• But this runs into the scale mismatch problem: data plots shows that the models and 
observations are on different scales, so we should expect the extreme value parameters to 
be different as well 

• Requires a more subtle approach – hierarchical modeling 
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Proposed Hierarchical Model 
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Bayesian Statistics Details 
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Europe Summer Mean Temperatures With Trend 

  

20 



Europe Summer Mean Temperatures With Trend  
and Central 50% of Hierarchical Model Distribution 
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Russia Summer Mean Temperatures With Trend 
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Russia Summer Mean Temperatures With Trend 
and Central 50% of Hierarchical Model Distribution 
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Central USA Summer Mean Temperatures With Trend 
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Central USA Summer Mean Temperatures With Trend and 
Central 50% of Hierarchical Model Distribution 
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Posterior Densities for the BLORRAT 
(numbers are for solid curves and equal weights; dashed curves allow 

for different weights between climate models and observations) 
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 Changes in Projected Extreme Event Probabilities Over Time 
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Sensitivity Plots 
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Conclusions 
• Extreme value theory provides a viable method for 

estimating extreme event probabilities in the presence of 
a trend 

• For combining observations with climate models, we 
propose a hierarchical model that allows for systematic 
discrepancies between models and observations 

• For each of Russia 2010, Central USA 2011 and Europe 
2012 events, estimated risk ratio is at least 2.3, and it’s 
likely (probability at least .66) that the risk ratio is >1.5. 

• We also computed future projections of extreme event 
probabilities; sharp increase for Europe; much less so for 
the other two regions studied 

• Paper to be submitted shortly; data and programs will be 
available 
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