#### **Ensuring Water in a Changing World**

## "Understanding Climate Change From Data -Perspectives from Hydroclimate Modeling and Data Assimilation."

#### Soroosh Sorooshian

Center for Hydrometeorology and Remote Sensing - University of California Irvine



NSF Expeditions in Computing: Understanding climate Change – 2013 Annual workshop Northwestern Univ. Evanston IL. August 16<sup>th</sup>, 2013























and many more ...

er 33\*38'37.91" N 117\*50'31.64" W elev 126.0



# Big Challenge

Adequacy of Hydrologic Observations for model input and Validation



# A Key Requirement!

# **Precipitation** Measurement is one of the KEY

#### hydrometeorologic Challenges



Push towards High Resolution ( Spatial and Temporal) Global Observations and Modeling

#### **2** Precipitation Scenarios with different Temporal properties



#### **Monthly Total**

#### 100 mm

100 mm



Α

Idea from: K. Trenberth, NCAR

### **Temporal Scale Importance:** Daily Precip. at 2 stations



## 2 Rain gages with different Temporal properties



## **Precipitation Observations: Which to trust??**



#### **Rain Gauges**





Satellite





Number of range gauges per grid box. These boxes are 2x2 degrees (Source: Global Precipitation Climatology Project)

# Coverage of the WSR-88D and gauge networks





Maddox, et al., 2002



- Daily precipitation
- Gages (1 station per 600 km^2)
- Hourly coverage even more sparse







#### Satellite-Based Rainfall Estimation: Promising !





# Satellite precipitation retrieval instruments

1) Using GEO satellites (Infrared/Visible channels)

<u>Advantage</u>:

- Good temporal and spatial resolution (30 min or less, 4 km)

very good coverage

**<u>Disadvantage</u>:** -Receives mostly cloud –top information

-Indirect estimation of precipitation.







## **Problems with IR only algorithm**

#### Assumption: higher cloud $\rightarrow$ colder $\rightarrow$ more precipitation





# Satellite precipitation retrieval instruments

2) Microwave

<u>Advantage</u>:

- Responds directly to hydrometeors and penetrates into clouds

- More accurate estimates



#### <u>Disadvantage</u>:

-low temporal and spatial resolution (~5-50km)

-Heterogeneous emissivity over land: (e.g., problem with warm rainfall over land)



# Satellite precipitation retrieval instruments

3) Active Radar <u>Advantage</u>: -More accurate - good spatial resolution



#### Disadvantage:

- Poor temporal resolution



## **Current Microwave Satellite Configurations**



<u>Precipitation Estimation from Remotely Sensed Information</u> <u>using Artificial Neural Networks (PERSIANN)</u>

# **PERSIANN System**

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks



#### <u>Precipitation Estimation from Remotely Sensed Information using</u> <u>Artificial Neural Networks (PERSIANN)</u>



# High Resolution Precipitation Estimates PERSIANN-CCS



#### Stages of a Convective Storm and Rainfall Distribution









# **Cloud Segmentation Algorithm**



Center for Hydrometeorology and Remote Sensing, University of California, Irvine





4km x 4km, 3-hour accumulated precipitation

15

10

3

SNOW

#### **Real Time Global Data: Cooperation With UNESCO**





#### **PERSIANN Satellite Product On Google Earth**

| Google Earth                                                               |                                                                          |                   |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|
| ile <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>A</u> dd <u>H</u> elp       |                                                                          |                   |
| Search                                                                     |                                                                          |                   |
| Fly To Find Businesses Directions                                          | 0 10 50 150 > No data                                                    | G                 |
| Fly to e.g., New York, NY                                                  | Accumulated Precipitation (mm)                                           | $(\bigcirc)$      |
|                                                                            |                                                                          |                   |
|                                                                            |                                                                          |                   |
| 6                                                                          |                                                                          |                   |
| ×                                                                          |                                                                          |                   |
| Places Add Content                                                         |                                                                          |                   |
| Click for Info:                                                            |                                                                          |                   |
| Current Accumulation Le   Current <u>3 Hour Accumulatio</u> Click For Info |                                                                          |                   |
| Click For Info                                                             |                                                                          |                   |
|                                                                            |                                                                          |                   |
| / Layers                                                                   |                                                                          |                   |
| Primary Database                                                           |                                                                          |                   |
| 🗄 🗹 🚖 Geographic Web                                                       | http://chrg WAh 1101 Ad 11                                               |                   |
| Koads  JD Buildings                                                        |                                                                          |                   |
| E A Street View                                                            |                                                                          |                   |
| 🗄 🗹 🖗 Borders and Labels 🛛 🗉                                               |                                                                          |                   |
| Traffic                                                                    |                                                                          |                   |
| 🕀 🛄 🞇 Weather                                                              |                                                                          |                   |
| Gallery                                                                    | © 2009 Europa Technologies                                               | Coodle            |
| 🖶 🔤 🚱 Global Awarenerr                                                     | Data SIO, NOAA, U.S. Navy, NGA, GEBCO                                    | Google            |
|                                                                            | Image © 2009 TerraMetrics                                                |                   |
|                                                                            | 11°23'16.20" S 45°19'52.71" E elev -3383 m Eye a                         | alt 14693.32 km 🜔 |
| 🯄 🛛 🕹 🌽 🖸 🖨 😂 📰                                                            | 🔄 🖸 🖉 Home - CHRS 🛛 🕘 HyDIS GWADI M 📎 Google Earth 👘 😚 gadgets 🐣 🗶 🔀 🖵 🕅 | 🔲 🛃 🌵 12:42 PM    |
|                                                                            |                                                                          |                   |





#### **US Daily Precipitation Validation Page**

#### http://www.cpc.ncep.noaa.gov/products/janowiak/us\_web.html



| Number of points:<br># points w/rain:<br>Mean rain rate:<br>Cond. rain rate:                                                                                                                               | (3)<br>gauge<br>13828.<br>4249.<br>5.55<br>17.82                                         | PERSIANN<br>13828.<br>4665.<br>4.25<br>12.47                                       | (R)<br>radar<br>13828,<br>2971,<br>3,13<br>14,46                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Max, rain rate:                                                                                                                                                                                            | 181.99                                                                                   | 79.07                                                                              | 131.45                                                                            |
| Correlation:<br>Mean Absolute Error:<br>RMSE (mm/day):<br>RMSE (normalized):<br>Probability of Detection<br>False Alarm Ratlo:<br>Bias Ratio (rain:no rain<br>Heidke Skill Score:<br>Hanssen-Kuipers Score | G-S<br>0.827<br>3.63<br>9.44<br>1.70<br>0.746<br>0.321<br>1): 1.098<br>0.574<br>e: 0.589 | G-R<br>0.726<br>3.42<br>11.23<br>2.02<br>0.654<br>0.665<br>0.699<br>0.692<br>0.634 | R—S<br>0.606<br>3.35<br>8.66<br>2.77<br>0.855<br>0.455<br>1.570<br>0.546<br>0.660 |
| Equitable initiat Score.                                                                                                                                                                                   | 0.402                                                                                    | 0.526                                                                              | 0.570                                                                             |
| DEDO                                                                                                                                                                                                       | LA KIKI                                                                                  | _                                                                                  |                                                                                   |







Center for Hydrometeorology and Remote Sensing, University of California, Irvine

#### 13Z 19Sep2003 thru 12Z 19Sep2003 Data on 0.25 deg grid (UNITS are mm/day)

## **Multi-spectral images:** Will combining LEO(PMW) and GEO (VIS/IR) Satellite Imagery improve Precipitation Estimates?



#### The ABI (Advanced Baseline Imager) on GOES-R

• Currently many sensors provide multi-spectral images with high spatial and temporal resolution.

• SEVIRI is a sensor on Meteosat Second Generation (MSG) satellite that has 12 spectral bands.

• In Approx. 2015, ABI sensor on GOES-R will provide 16 spectral bands.



Figure courtesy of ITT Industries



•Together a great opportunity to investigate the role of multi-spectral data for precipitation estimation



**Relative-frequency dist. of different channels (rain / no-rain) conditions** 

By counting satellite pixels under rain and no-rain conditions we can plot the relative frequency curves for each spectral band. These curves indicate that different spectral channels show different capabilities to distinguish between rain and no-rain pixels

#### Case Study: Hurricane Ernesto August 30, 2006





# **PERSIANN Climate Data Record (PERSIANN-CDR)** 33 Years of Multi-Satellite, High-Resolution, Near-Global, Daily Precipitation Data Record



### **PERSIANN-CDR** Algorithm





### Preliminary Tests (Aug. 2013)





Center for Hydrometeorology and Remote Sensing, University of California, Irvine

## **Daily Comparisons**



#### Devils are in details ...







# PERSIANN-CONNECT 8-13-2013 University of California, Irvine





EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION

Last Chance: Present at the 2013 Fall Meeting Exploration Station. Deadline 12 Aug. http://bit.ly/FMExplore

#### IN THIS ISSUE:

News: Shale Gas Development Requires Bipartisan Path Forward, p. 278 Meeting: Investigating Ductile Lithosphere Deformation, p. 280 Meeting: Risks, Extreme Events, and Abrupt Changes, p. 280 About AGU: Dasgupta Receives Hisashi Kuno Award, p. 281 About AGU: Highlights From the Science Policy Conference, p. 282 AGU Bookshelf: Lagrangian Modeling of the Atmosphere, p. 284

VOLUME 94 NUMBER 32 6 AUGUST 2013

#### Computational Earth Science: Big Data Transformed Into Insight

More than ever in the history of science, researchers have at their fingertips an unprecedented wealth of data from continuously orbiting satellites, weather monitoring instruments, ecological observatories, seismic stations, moored buoys, floats, and even model simulations and forecasts. With just an internet connection, scientists and engineers can access atmospheric and oceanic gridded data and time series observations, seismographs from around the world, minute-by-minute conditions of the near-Earth space environment, and other data streams that provide information on events across local, regional, and global scales. These data sets have become essential for monitoring and understanding the associated impacts of geological and environmental phenomena on society.

If such algorithms are run in a computerenvironment designed to home in on characteristics of objects or events of interest, then the data can be crunched even more. efficiently, allowing insights from big data to be revealed at a quicker pace. Such machine learning evolved from artificial intelligence research and focuses on developing models that are based on the behaviors and characteristics of empirical data. Capturing the behaviors and characteristics from data and determining their underlying probability distributions can provide new knowledge regarding the object or characteristic of interest, Typically, the properties or "true" underlying probability distributions of the observed variable of interest are not explicitly known. However, by seeking to define or describe these underlying probability distributions, data mining can help scientists



Fig. 1. A connected four-dimensional atmospheric river or "precipitation object," extracted from the PostgreSQL database. The atmospheric river originated in the eastern Pacific and affected the western United States from 28 to 30 December 2005.

This increasing amount of data has led us



\*Sellars, S., P. Nguyen, W. Chu, X. Gao, K. Hsu, and S. Sorooshian (2013), Computational Earth Science: Big Data Transformed Into Insight, EOS Trans. AGU, 94(32),277

# **Transforming Big Data Into Insight**

- PERSIANN CONNected precipitation objECT
  PERSIANN-CONNECT
- Connectivity algorithm transforms data into 4D "objects" in time and space
  - Latitude, Longitude, Time and Intensity
- Allows "object" population statistics to be discovered and analyzed Teleconnections with Climate Indices?





## **PERSIANN**

- Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)
- Hourly bias corrected PERSIANN w/GPCP data
- 0.25 degree
- 60<sup>0</sup> North 60<sup>0</sup> South
- 01 March 2000 1st January 2011







## **4D** Object Characteristics

#### Physical Based Characteristics:

- Duration (hr)
- Max Intensity (mm/hr)
- Speed (km/hr)
- Centroid (lat/lon)
- Volume (m^3)
- and many more...





\*Image courtesy of Dr. Wei Chu (CHRS)

#### **Online PERSIANN-CONNECT Database Access**

- All objects and characteristics are stored in a publically available PostgreSQL database
  - http://chrs.web.uci.edu/research/voxel/index.html



#### Selection Tool - High volume of database queries may slow response time

Although we always try to optimize the performance of the database, a specific query will search objects within 1.2 billion rows of data.

This distribute search tool is meant to search specific objects in time and space. Please notice that a smaller geographical areas and shorter durations will result in faster processing of your request. If you need a longer duration data for a large area, we recommend obtaining the data from the ftp site listed above. Start by selecting a desired geographic box.

Then select the duration (Start-End) of the required data. Lastly, set minimum and maximum intensity value bounds and click the submit botton.





#### Large-Scale Irrigation and Incorporation in Models





Modeling the effects of irrigation on regional hydroclimate

#### Previous studies:

- 1) Based on temperature variation
- 2) Assuming soil water at field capacity (saturation)
  - the modeled soil layers are kept at field capacity or at full saturation during the simulation runs (e.g.Adegoke, et al. 2003; Haddand et al. 2006; Kueppers at al. 2007)

### <u>Our study</u>

Implementing a more realistic irrigation method recommended by Hanson et al. (2004)



#### Mean skin surface temp. at daytime in June, July and August, 2007.



Adding irrigation into RCM (MM5), Improves the model's ability to simulate, more closely, the temperature patterns observed by MODIS



Sorooshian et al, (JGR 2011)

# "Observed" vs "Model-Generated" Data



# Studies over California's Central Valley Irrigation Region



*Sorooshian et al. 2011 & 2012* 

#### Actual ET Estimates From Different Data sets- JJA 2007



2007 JJA Monthly ET (mm)



Li et al, 2011



# In a nutshell!

- ET Underestimation by MM5 control run is roughly about 10 million Ac-Ft of water/yr
- ET Overestimation by MM5 with "full-saturation" irrigation is about 6.5 Million Ac-Ft/yr
- Use of the realistic irrigation scheme results in only 1.5 Million Ac-Ft/yr of overestimation.

#### placed in Societal context :

Roughly speaking, the amount of ET underestimation equals supply requirement of 13 million households and the overestimation covers the needs of 9 million households per year.



### Thank You For the Invitation

08/14/2009

Somewhere in New Mexico, USA - Photo: J. Sorooshian





# Uncertainty of Estimates Error Analysis



### Spatial-Temporal Property of Reference Error



Center for Hydrometeorology and Remote Sensing, University of California, Irvine

#### Reference Error: $\Delta T = 24$ -hour, $\Delta A = 0.25^{\circ} \times 0.25^{\circ}$



#### Scaling Property of PERSIANN-CCS Reference Error





## Radar-Gauge Comparison (Walnut Gulch, AZ)





Magenta line: Tracks of the location of the peak rainfall rate pixel





**Green line**: the 6-hourly track of rainfall volume centroid **Magenta line**: the 6-houly track of the typhoon provided by IBTrACS.



## Interpolation of 3-hour Precipitation

