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NSF Expeditions in Computing:
Understanding climate Change — 2013 Annual workshop
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A Key Requirement!

’...

Precipitation Measurement is one of
the KEY -

hydrometeorologic
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Push towards High Resolution ( Spatial and Temporal) Global
Observations and Modeling

’ Center for Hydrometeorology and Remote Sensing, University of California, Irvine



2 Precipitation Scenarios with different Temporal properties

Monthly Total

100 mm

100 mm

Idea from: K. Trenberth, NCAR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Temporal Scale Importance: paily Precip. at 2 stations

Monthly total: 100 mm Monthly total: 100 mm
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2 Rain gages with different Temporal properties

40 H
20 Monthly
A - Amount 100 mm
0 T T T T T T T T T T T T T T T T T I I T T T T
Frequency 6.7%
1 6 11 16 21 26 Intensity 50.0 mm
local Floods
Stream bed Recharge
40 Amount 100 mm
20 - Frequency 67%
Intensity 5.0 mm
B 0 sl s nall _oln_snfla. als__

1 6 11 16 21 26

soil moisture replenished

Little or no runoff Idea from: K. Trenberth, NCAR

~* Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Precipitation Observations: Which to trust??
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Rain Gauges

Satellite

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



NUMBER OF GPCC—MONITORING—STATIONS
far MAY 1998
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Coverage of the WSR-88D and gauge networks

1kmAGL - Daily precipitation
- Gages (1 station per 600 km”2 )
Maddox, et al., 2002 - Hourly coverage even more sparse

Center for Hydrometeorology and Remote Sensing, University of California, Irvine






Satellite-Based Rainfall Estimation: Promising !

Observations from space: Near-continuous, global coverage,

Quickseat
TRMM

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Satellite precipitation retrieval instruments

1) Using GEO satellites
(Infrared/Visible channels)

Advantage: ‘
- Good temporal and spatial resolution S—
(30 min or less, 4 km)

- very good coverage

Disadvantage:
-Recelves mostly cloud —top information

-Indirect estimation of precipitation.




Problems with IR only algorithm

Assumption: higher cloud -2 colder - more precipitation




Satellite precipitation retrieval instruments

2) Microwave

Advantage:

- Responds directly to hydrometeors
and penetrates into clouds

- More accurate estimates

Disadvantage:
-low temporal and spatial resolution (~5-50km)

-Heterogeneous emissivity over land:
(e.g., problem with warm rainfall over land)

r‘; Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Satellite precipitation retrieval instruments

3) Active Radar
Advantage:

-More accurate

- good spatial resolution

Disadvantage:
- Poor temporal resolution

. ’ Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Current Microwave Satellite Configurations

Precip (mm/d) Aug 1987 I I
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Source: Huffman et al. 2007

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Precipitation Estimation from Remotely Sensed Information

weural Networks (PERSIANN)




Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN

PERSIANN System “Estimation” Products

Hourly Global Precipitation Estimates
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Stages of a Convective Storm and Rainfall Distribution

TOWERING CUMULUS STAGE

MATURE STAGE

DISSIPATING STAGE

Towering Stage

» Mature Stage
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Cloud Segmentation Algorithm

t=t,

Patch Feature Extraction Patch Classification Rainfall Estimation
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High Resolution Precipitation Estimates
from PERSIANN-Cloud Classification System

Radar Observation (2 km AGL) PERSIANN-CCS Estimates
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4km x 4km, 3-hour accumulated precipitation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Real Time Global Data: Cooperation With UNESCO
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Many Features provided to users
with Public Domain Software.

PERSIANN/NESDIS Data
For: 04-14-2008 @ 12 Hour UT
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PERSIANN Satellite Product On Google Earth

* Google Earth
View Tools Help

Fly To Find Businesses Directions

Fly to e.g

Add Content
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US Daily Precipitation Validation Page

http://www.cpc.ncep.noaa.gov/products/janowiak/us_web.html
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"”ulti—spectral Images:

Will combining LEO(PMW) and GEO (VIS/IR) Satellite
Imagery improve Precipitation Estimates?




The ABI (Advanced Baseline Imager) on GOES-R

 Currently many sensors provide multi-spectral images with high spatial
and temporal resolution.

« SEVIRI i1s a sensor on Meteosat Second Generation (MSG) satellite
that has 12 spectral bands.

* In Approx. 2015, ABI sensor on GOES-R will provide 16 spectral
bands.

Figure courtesy of ITT Industries

*Together a great opportunity to investigate the role of multi-spectral
data for precipitation estimation



Relative-frequency dist. of different channels (rain / no-rain) conditions
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By counting satellite pixels under rain and no-rain conditions we can plot the relative frequency curves
for each spectral band. These curves indicate that different spectral channels show different capabilities to
distinguish between rain and no-rain pixels



Case Study: Hurricane Ernesto August 30, 2006

c) Observed rain area
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PERS_I/ANN Climate Data Record (PERSIANN-CDR)

33 Years of Multi-Satellite, High-Resolution, Near-Global, Daily

Precipitation Data Record




PERSIANN-CDR Algorithm

PERSIANN Hourly Rainfall
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Preliminary Tests (Aug. 2013)

GPCP 2.5-deg Monthly Raln Rate (mm/day), August 2005
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o 90 180 270 360




Daily Comparison, Global (60S-60N), Mean Arial Precipitation (mm/day) for 1997-2009

Daily Comparisons
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Devils are in details ...
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PERSIANN-CONNECT
8-13-2013
University of California, Irvine




EOS, TRANSACTIONS

AMERICAN GEOPHYSICAL UNION

Last Chance: Present at the 2013 Fall Meeting Exploration Station.
Deadline 12 Aug. http:/bit.ly/FMExplore

IN THIS ISSUE:

News: Shale Gas Development Requires Bipartisan Path Forward, p. 278
Meeting: Investigating Ductile Lithosphere Deformation, p. 280
Meeting: Risks, Extreme Events, and Abrupt Changes, p. 280

About AGU: Dasgupta Receives Hisashi Kuno Award, p. 281

About AGU: Highlights From the Science Policy Conference, p. 282

AGU Booksheif; Lagrangian Modeling of the Atmosphere, p. 284
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Computational Earth Science:
Big Data Transformed Into Insight

More than ever in the history of sci-
ence, researchers have at their fin
unprecedentad wealth of data fn
ously orbiting satellites, weather i hor-

ng instruments, logical observatories,
seismic stations, moored buoys, floats, and
even moded simulations and forecasts. With
st an internet connection, scientists and
engineers can access atmospheric and oce
anic gridded data and time series observa-
tions, ndt
minute -mimte i th 3
Earth space environment, and other data
streams that provide information on events
acrass jocal, regional, and glo!
These data sets have become essential for
oring and understanding the associ
atesd impacts of geological and environmen
tal phenomena on society.

This incre:

ales

18 amount of data has led us

If such algorithms are run in a computer
igned to home in on char
or events of interest

environment de:

acteristics of object
then the data can be crunched even more
efficiently, allowing insights from big data to
be revealed at a quicker pace, Such machine
leaming evolved from artificial intefligence
research and focuses an developing mod

els that are based on the hehaviors and
characteristics of empirical data. Captur

ing the aviors and characteristics from
data and determir their underlying proly
ability distributions can provide new knowl
edge regard } ot or characteristic
ol interest. Typically, the properties or "true’
underlying probability distributions of the
observed variable of interest are not explic
itly known. However, by seeking to define

or describe these underlying probability dis
tributions, data mining can heldp scientists
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*Sellars, S., P. Nguyen, W. Chu, X. Gao, K. Hsu, and S. Sorooshian (2013),
Computational Earth Science: Big Data Transformed Into Insight, EOS Trans. AGU, 94(32),277

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Transforming Big Data Into Insight

 PERSIANN CONNected precipitation objECT
— PERSIANN-CONNECT

» Connectivity algorithm transforms data into 4D “objects” in
time and space

— Latitude, Longitude, Time and Intensity

* Allows “object” population statistics to be discovered and
analyzed — Teleconnections with Climate Indices?

Traditional 4 Dimensional Approach 4 Dimensional Connected Object

Smm/hr
Pl / Smm/hr
- — - Voxel Smm/hr




PERSIANN

 Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN)

« Hourly bias corrected PERSIANN w/GPCP data~
« (.25 degree |
» 60° North - 60° South ..L_ \
« 01 March 2000 — 1st January 2011 == == (B8 ~- 8




4D Object Characteristics

Physical Based Characteristics:

Duration (hr)

Max Intensity (mm/hr)
Speed (km/hr)
Centroid (lat/lon)
Volume (m”3)

and many more...

Time

*Image courtesy of Dr. Wei Chu (CHRS)

by Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Online PERSIANN-CONNECT Database Access

 All objects and characteristics are stored in a publically
available PostgreSQL database

— http://chrs.web.uci.edu/research/voxel/index.html

Selection Tool - High volume of database queries may slow response time

7, Center for Hydrometeorslogy &
Remote Sensing

Ueseeruty of (atwmni, rese
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Download Options

Our Spunsers

Download Options

¥ Download rmaw object data
v Download statistics data

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Large-Scale Irrigation and Incorporation in Models

— Impact of Irrigation ™™

| <7 ;%
\\\ IiR‘S Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Modeling the effects of irrigation on regional hydroclimate

Previous studies:

1) Based on temperature variation

2) Assuming soil water at field capacity (saturation)
 the modeled soil layers are kept at field capacity or at full

saturation during the simulation runs (e.g.Adegoke, et al.
2003; Haddand et al. 2006; Kueppers at al. 2007)

Our study

Implementing a more realistic irrigation method
recommended by Hanson et al. (2004)

g | : o : : :
b/ Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Mean skin surface temp. at daytime in June, July and August, 2007.

MM5-C MM5-R

122W  120W 122W  120W 122W  120W 122W  120W

21 24 27 30 33 36 39 42 45 48 Sl 54 37

Skin Temp. (°C)

Adding irrigation into RCM (MM)), Improves the model s ability to
simulate, more closely, the temperature patterns observed by MODIS

Sorooshian et al, (JGR 2011)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




“Observed” vs “Model-Generated’ Data

Irrigation areas CIMIS stations

1 N R Y
122W  120W

Studies over California’s Central

Valley Irrigation Region
Sorooshian et al. 2011 & 2012

‘ S | : : : . . .
¢ Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Actual ET Estimates From Different Data sets— Jia 2007

36N i b \ EN
\‘ [ \ \ L | ’\‘\
L 3 - NARR GLDASMNoah -NLDASA
1 MQODI1S BNYFE ; 3 Q i
190 -1 iLive i . e ilamin D S henLia Teps & | i 0 | &
122W 119W 122w 119W 122w 119w 122W 119w 122w 119w
S 10 15 20 25 30 35 50 75 100 125 150 175 200 225 250 275 300

2007 JJA Monthly ET (mm)

Lietal, 2011

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



In a nutshell!

* ET Underestimation by MM5 control run is roughly about 10
million Ac-Ft of water/yr

* ET Overestimation by MM5 with “full-saturation” irrigation is
about 6.5 Million Ac-Ft/yr

» Use of the realistic irrigation scheme results in only 1.5 Million
Ac-Ft/yr of overestimation.

placed In Societal context :

Roughly speaking, the amount of ET underestimation
equals supply requirement of 13 million households and
the overestimation covers the needs of 9 million
households per year.

g | : o : : :
b/ Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Spatial-Temporal Property of Reference Error
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Reference Error: AT = 24-hour, AA = 0.25°x0.25°
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Scaling Property of PERSIANN-CCS Reference Error

rmse (mm/h)
P O

N

24 0.96

Spatial (*)

Hour

/' Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Radar-Gauge Comparison (Walnut Gulch, AZ)

Precipitation event:
Aug. 11, 2000

Storm depth (mm)

0

0 5 10 Kilometers 40
[ —

Radar data:

N TR

Horizontal Pulse &

70% overestimation
by the radar!

Z=300R4, 2.4° elevation, HailThresh=56 dbz Morin et al ADWR 2005

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Typhoon loke 08/20-09/05, 2006

140° 150° 160° 170° 180° -170° -160° -150°

Hourly Rainfall (mm/hour:
I ;

0 5 10 15

== Magenta line: Tracks of the location of the peak rainfall rate pixel

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Typhoon loke

00:00-01: 00 UTC Sept.5.2006

Green line: the 6-hourly track of rainfall volume centroid
Magenta line: the 6-houly track of the typhoon provided by IBTrACS.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Interpolation of 3-hour Precipitation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



