Spatiotemporal Predictive Modeling for Climate Science: Are we there yet?

Arindam Banerjee Dept of Computer Science & Engineering University of Minnesota, Twin Cities <u>banerjee@cs.umn.edu</u>

Expeditions Workshop, August 4-5, 2015

Spatiotemporal Predictive Modeling for Climate

- Model phenomenon y using 'predictors' x
 - Example: y is total Indian summer monsoon rainfall (ISMR)
- 'Predictors' x: numerous spatial and temporal features
 Highly correlated data, temporal lags, spatial teleconnections
- Mechanistic understanding: climate processes as predictors
 - Representation of processes: climate indices, spectral information
- Multiple mechanisms: Occam and Murphy
 - Different models for different phases of the climate system

Small Sample Regime and Stability

- Modeling complex phenomenon with small samples
 - MPU*: High accuracy, limited stability
 - Stability needs to be a priority
 - Iterative Occam: refine stable, moderately accurate models

*minimum publishable unit

- 'Proving' stability: Uniform bounds for model class
 - How many samples are sufficient?
 - Explicit modeling assumptions
- 'Testing' stability: Robustness
 - Are the results stable?
 - Potentially more general scope

Small Sample Regime: Bias, with Regularization

- General regularized regression (Banerjee et al., 2014)
 - E.g., sparsity, group-sparsity, hierarchy, ridge, low-rank

$$\min_{\beta \in R^p} \left\{ \frac{1}{2n} \|y - X\beta\|_2^2 + \lambda_n R(\beta) \right\}$$

 $R(\beta)$: bias structure of β (e.g., based on domain knowledge)

Group sparsity over linear regression coefficients

- Performance guarantees for regularized regression \bullet
 - How many samples are needed to accurately estimate β ?
 - What is the rate of convergence?

Why Should I Care?

- Estimation in simple vs structured problems
 - Example: (a) mean of samples $\{x_i\}$ vs. (b) Lasso on samples $\{(y_i, x_i)\}$
- Structured problem with *n* samples
 - "Bad" phase: $n < n_0$, <u>do not</u> trust the estimate
 - "Good" phase: $n \ge n_0$, estimate is good, error decreases as $\frac{c}{\sqrt{n}}$

Gaussian "width" of sets

Supremum of (geometric) Gaussian process, indexed by $u \in \Omega$

"What is the maximum level a certain river is likely to reach over the next 25 years? (Having experienced three times a few feet of water in my house, I feel a keen personal interest in this question.) ..."

6

The Generic

Chaining

 $\operatorname{Esup}_{t \in T} X_t \leq L\gamma_2(T, d)$ sup $X_t \leq L\gamma_2(T, d)$

D Springer

Structured Models: Rate of convergence

c depends on "width" of norm ball, $\{u \mid R(u) \le 1\}$

Structured Convexity in High-Dimensions

Milman, 1998, Vershynin, 2014

Structured Models: Sample Complexity

Bickel et al., 2009, Chandrashekaran et al., 2012, Negahban et al., 2012, Banerjee et al., 2014, Tropp, 2015

Great Lakes Precipitation

Predictors:

- Climate indices (long range), e.g., NAO monthly
- Atmospheric variables (station level, regional)

Stable sparse estimation: 2 levels of feature selection

- Lasso: L₁-norm regularized linear regression
- Stability test: Randomly permuting y, fixed x

Combing Global Climate Model Outputs

Combining GCM outputs as multi-task learning (Goncalves et al., 2014)

- Tasks: Climate model weights for a process, variable, or region
- Task based regularization
 - Model weights on related tasks should be similar
- Several alternatives as baselines
 - Model average (IPCC), 'Best' GCM, etc.

RMSE Comparison: Multi-task vs Baselines

Latent Variable Models: Iterative Occam

- Predictive modeling, data $\{(x_i, y_i)\}$
 - Model with no latent variables, e.g., single linear regression (SLR)

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2n} \sum_{i=1}^n (y_i - \langle x_i, \beta \rangle)^2 + \lambda_n \|\beta\|_2^2$$

- Model with latent variables, e.g., mixture of linear regression (MLR)

$$\min_{\substack{z_1,...,z_n \in \{0,1\}\\\beta_1,\beta_2 \in \mathbb{R}^p}} \frac{1}{2n} \sum_{i=1}^n (y_i - \langle x_i, (z_i\beta_1 + \overline{z}_i\beta_2) \rangle)^2 + \lambda_n (\|\beta_1\|_2^2 + \|\beta_2\|_2^2)$$

- When will MLR succeed?
 - Multiple mechanisms responsible for y
 - At any given point, one mechanism is active/dominant

Indian Summer Monsoon Rainfall (ISMR)

- Predicting total ISMR
 - Long period average (LPA): 890 mm, variation within 10% of LPA
 - Gowariker (1991), DelSole and Shukla (2002, 2006), Rajeevan et al. (2006), Saha et al. (2015)
- Dataset: 66 years, 1948-2013, covariates from Saha et al. (2015)
- Methodology, repeated 200 times

ISMR Prediction: SLR, train vs test

ISMR Prediction: SLR vs MLR, train

17

ISMR Prediction: MLR, train vs test

ISMR Prediction: SLR vs MLR, test

Are We There Yet?

- Identifying nonlinear multivariate dependencies
 - "Simple" nonlinearities: monotonic dependencies

uiter a good start es pendenci Far from it ...

- Causal discovery
 - Mechanistic understanding, based on climate processes

Conclusions

- Modeling complex phenomenon with small samples
 - Stability needs to be a priority
 - Iterative Occam: refine stable, moderately accurate models
- Domain knowledge helps build structured models
 - Structured models are stable with small samples
 - Identifies dominant factors, improves understanding
- Multiple mechanisms: Latent variable models
 Different models for different phases of the climate system
- Better approaches for proving/testing stability

Acknowledgements

- Students and Collaborators
 - Soumyadeep Chatterjee, Andre Goncalves, Vidyashankar Sivakumar
 - Puja Das, Farideh Fazayeli, Qiang Fu, Karthik Subbian, Huahua Wang
 - Tim DelSole and Claire Monteleoni
 - Vipin Kumar and Auroop Ganguly

References

- A. Banerjee, S. Chen, F. Fazayeli, V. Sivakumar, Estimation with Norm Regularization, *Advances in Neural Information Processing Systems (NIPS)*, 2014.
- S. Chatterjee, S. Chen, A. Banerjee, Generalized Dantzig Selector: Application to the k-support norm, *Advances in Neural Information Processing Systems (NIPS)*, 2014.
- A. Goncalves, P. Das, S. Chatterjee, V. Sivakumar, F. Von Zuben, A. Banerjee, Multitask Sparse Structure Learning, *Conference on Information and Knowledge Management (CIKM)*, 2014.
- H. Wang, F. Fazayeli, S. Chatterjee, and A. Banerjee, Gaussian Copula Precision Estimation with Missing Values. *Artificial Intelligence and Statistics (AISTATS)*, 2014.
- K. Subbian and A. Banerjee, Climate Multi-model Regression Using Spatial Smoothing, *SIAM Data Mining (SDM)*, 2013.
- S. Chatterjee, K. Steinhaeuser, A. Banerjee, S. Chatterjee, and A. Ganguly, Sparse Group Lasso: Consistency and Climate Applications, *SIAM Data Mining (SDM)*, 2012.