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Scatter Plot
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Leave-One-Out Regression Fits

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●●
●

●
●

●
●

●

●

−2 −1 0 1 2

15
.0

15
.5

16
.0

16
.5

17
.0

17
.5

actual Y

P
re

di
ct

or 1970
1971

1972

19731974

1975

1976

1977

1978
1979

1980

1981

1982
1983

1984

1985
1986 1987

19881989
1990

1991

19921993
1994

19951996
19971998

1999

2000

Predictor vs. Actual Y (1970−2000)

Correlation= 0.56

4 / 37



Surprise! Y is random!

I On a 2.5◦ × 2.5◦ grid, ocean surface is about 8000 points.

I Only about 50 years of observations of global ocean surface.

I Physics varies with season, so seasons cannot be pooled.

Estimate 8000 parameters using 50-150 data points

This is an example of data fishing.
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1. Not all climate scientists understand this issue.

2. For those who do, machine learning “looks” like data fishing.

3. It is useful to challenge climate scientists about how they
know what they tell you.

4. Some correlations are trusted.
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ENSO Teleconnections?

figure http://www.cpc.noaa.gov/products/analysis monitoring/impacts/warm.gif
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Proving an Observed Relation is Real

I Relation holds in independent data.

I Relation can be reproduced by climate models.

I Relation can be understood through simple dynamical models.
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ENSO Teleconnection Inferred in 1989 (Precipitation)

figure: Ropelewski and Halpert (1989, J. Climate)
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Machine Learning Approach: Bet on Sparsity

Frame the estimation such that most parameters are zero.

“Use a procedure that does well in sparse problems, since no
procedure does well in dense problems.”

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 2nd edition

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 2nd edition
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Examples of Sparsity

grid points: variable is related to localized geographic regions.

matrix rank: variable is related to a few patterns.

spectral: variable fluctuates over a small range of frequencies

PCs: variable is related to components with high variance

variables: variable is related to certain physical variables
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What is the most appropriate form of sparsity
when finding relations in climate data?

13 / 37



Small-scale structure is less trustworthy than
large-scale structure in interseasonal climate.

Climate Models

I Accuracy of numerical solutions of partial differential equations
degrades with decreasing length scale.

I Subgrid scale phenomena are not solved directly, but are
parameterized in terms of large scale grid quantities.

I Surface topography is rarely accurately included, and often induces
numerical phenomena that have no counterpart in nature.
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Eigenvectors of Laplace Operator provide a natural basis set
for representing large spatial scales or long temporal scales.

∇2ψ = −λ2ψ

Circle: Fourier series (λ is the frequency)

Sphere: Spherical Harmonics (λ is the total wavenumber)

Large-scale → most amplitudes vanish.
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Laplacian Eigenvectors Over the Pacific
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DelSole and Tippett (2015, Journal of Climate)
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Regularized Linear Regression

‖ y − X w ‖2 + λR(w)
predictand predictors weights regularizer

Typical regularizers (choice of R) in machine learning:

I wk = 0 for k ≥ K (Principal Components Regression)

I L1 norm (|w|) (LASSO)

I L2 norm (‖w‖2) (Ridge)
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from figure 1 of Hoerling et al. 2013, J. Climate
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Regression model:

Texas temperature = SST in Pacific ∗ weights + noise

Prediction Measure:

Cross-Validated Skill Score = 1− MSE

variance of Texas Temperature
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Principal Components Regression
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Principal Components Regression
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LASSO w/ Laplacians
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LASSO w/ Laplacians
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LASSO w/ Laplacians
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Ridge w/ Laplacians
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Ridge w/ Laplacians
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Can Climate Models Reproduce These Relations?
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North American Multi-Model Ensemble (NMME)

I Seasonal-to-intraseasonal predictions by state-of-the-art models
CFSv1 NOAA Climate Forecast System version 1

CFSv2 NOAA Climate Forecast System version 2

CM2p1-AER GFDL Climate Model version 2.2

FLOR-A GFDL

FLOR-B GFDL

NASA NASA Goddard Observing System v5

IRI-D IRI-ECHAM4 Direct Coupling

IRI-A IRI-ECHAM4 Anomaly Coupling

CCSM4 NCAR Community Climate System Model

CCSM3 NCAR Community Climate System Model

CMC1 Canadian Coupled Climate Model

CMC2 Canadian Coupled Climate Model

I at least 6 ensemble members per model

I 8-12 month predictions/hindcasts

I 1982-2014 (not all models available during this period)

I pool initial start months January - May

Kirtman et al, 2014, Bulletin of the American Meteorological Society
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Principal Components Regression
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LASSO
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Ridge
CanCM3 CanCM4 CCSM3

CCSM4 CM2p1−AER IRI−A

IRI−D NASA CFSv1

CFSv2 FLOR−A FLOR−B

−1 −0.75 −0.5 −0.25 0.25 0.5 0.75 1

31 / 37



from figure 3 of Hoerling et al. 2013, J. Climate
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Use relations derived from climate models on
observations

Texas temperature = SST in Pacific ∗ weights + noise
observed observed model
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Principal Components Regression
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LASSO
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Ridge
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Summary for Finding Relations in Climate Data

1. Data fishing is a serious problem.

2. Convincing evidence of relation involves showing:

I relation holds in independent data
I relation reproduced by climate models
I relation understood from simple dynamical models

3. “Large-scale” principle can be framed as a sparsity problem.

4. N. Pacific is a major predictor of Texas temperature in models and
observations.

5. LASSO and Ridge find relations that generalize to independent data
better than EOF method.

37 / 37


