Identifying Rare Class in Absence of True Labels Application to Monitoring Forest Fires from Satellite data

Varun Mithal

(University of Minnesota-Twin Cities)

NSF Expeditions Workshop August 4, 2015

UNIVERSITY OF MINNESOTA Driven to Discover™

Global Mapping of Forest Fires

Mapping fires is important for...

• Climate change studies

e.g., linking the impact of a changing climate on the frequency of fires

• Carbon cycle studies

e.g., quantifying how much CO₂ is emitted by fires (critical for UN-REDD)

• Land cover management

e.g., identifying active deforestation fronts

Aerial/Ground Surveys

- Accurate
- Expensive
- Globally infeasible

Manual inspection

- Human effort
- Difficult due to rare class
- Globally infeasible

Computational Techniques

- Automated
- Cost-effective
- Globally scalable
- Historical as well as near-real time

F

Predictive Modeling Approach

Given a feature vector $\boldsymbol{x} \in \mathbf{R}^d$ predict the class label $y \in \{0, 1\}$

Instance $oldsymbol{x}_i \in \mathbf{R}^d$	Label $y_i \in \mathcal{Y} = \{0, 1\}$
$oldsymbol{x}_1$	1
$oldsymbol{x}_2$	0
$oldsymbol{x}_3$	0
$oldsymbol{x}_4$	1
	•
$oldsymbol{x}_N$	1

Forest Fire Mapping

Multispectral reflectance data

- 7 spectral bands
- 500 m spatial resolution
- 8-day composites

Forest fire mapping

Predicts whether a given pixel is burned or not?

Challenges: Heterogeneity

Variations in the relationship between the explanatory and target variable

- Geographical heterogeneity
- Seasonal heterogeneity
- Land class heterogeneity

Train	Test	Precision	Recall	F-value
California	California	94	65	72
Georgia	California	53	53	53
Georgia	Georgia	87	53	66
California	Georgia	10	30	16

Temporal heterogeneity:

Impossible to obtain training samples going back in time

Global availability of labeled samples for burned area classification

Challenges: Ultra skewed class distribution

Burned areas (California) in year 2008 # Positives : 10³ sq. km. # Negatives: 10⁶ sq. km.

Prediction at every time step: $46 * 10^6$

- Requires extremely low FPR
- Overall accuracy is not very useful
- Need to jointly maximize precision and recall
 - Harmonic mean (F-measure)
 - Geometric mean

- **Step 1**: Learn classification models using imperfect (noisy) labels
- **Step 2**: Combine predictions from classification model and the imperfect label
- Step 3: Exploit guilt-by-association using spatial context

Rare Class **P**rediction in Absence of Ground **T**ruth

Step 1: Train a classifier using imperfect labels

Use a set of features to derive imperfect labels a

Step 1: Train a classifier using imperfect labels

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to Pr(a=1|x) **and** Pr(y=1|x) **is identical**

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to Pr(a=1|x) and Pr(y=1|x) is identical

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to Pr(a=1|x) and Pr(y=1|x) is identical

Assumptions

(1) $\alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to Pr(a=1|x) and Pr(y=1|x) is identical

Approach

Use labeled validation data set to select threshold.

Labeled data not available

Assumptions

 $(1) \quad \alpha + \beta < 1$

(2) Imperfect label is conditionally independent of feature space given the true label

Ranking according to Pr(a=1|x) and Pr(y=1|x) is identical

Approach

Select the threshold that maximizes classification accuracy by treating imperfect labels as target.

Our Contribution

We prove that for balanced datasets this approach is optimal.

*Identical prediction is possible using appropriate threshold on Pr(a=1|x), for every threshold on Pr(y=1|x). Natarajan 2013

Challenge: Accurately estimate precision and recall with imperfect labels

Challenge: Accurately estimate precision and recall with imperfect labels

Our Contributions:

(1) A new method to estimate precision*recall using imperfect labels.(2) We prove that the selected threshold maximizes the true precision*recall

Step 1: Train a classifier using weak labels

Step 2: Combine predictions of classifier with imperfect labels

- Instance is labeled positive only if it is flagged positive by both
- Considerably reduces the number of false positives
- Incorrectly prunes away some positives

For rare class scenarios, the combination step drastically increases precision with relatively smaller loss of recall.

Step 1: Train a classifier using weak label

Step 2: Combine predictions

Step 3: Guilt-by-association

Observations:

- Combination step prunes away some positives
- Missed positives in the neighborhood of confident positives

Approach:

 A collective classification method to make use of labels of neighbors during final classification of each node

Global Monitoring of Fires in Tropical Forests

Fires in tropical forests during 2001-2014

1 million sq. km. burned area found in tropical forests

• more than three times the total area reported by state-of-art NASA products.

Validation: Multiple sources

Validation confirmed that the additional burned areas detected using RAPT are actual burns missed by state-of-art products

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is **dNBR**

- Used for validation in previous studies, including MCD45

$$\begin{split} NBR &= \frac{band2 - band7}{band2 + band7} \\ dNBR &= NBR_{prefire} - NBR_{postfire} \end{split}$$

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

$$\begin{split} NBR &= \frac{band2 - band7}{band2 + band7} \\ dNBR &= NBR_{prefire} - NBR_{postfire} \end{split}$$

A commonly used index is **dNBR**

- Used for validation in previous studies, including MCD45

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

 $NBR = rac{band2 - band7}{band2 + band7}$ $dNBR = NBR_{prefire} - NBR_{postfire}$

A commonly used index is *dNBR*

- Used for validation in previous studies, including MCD45

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

A commonly used index is **dNBR**

- Used for validation in previous studies, including MCD45

$$\begin{split} NBR &= \frac{band2 - band7}{band2 + band7} \\ dNBR &= NBR_{prefire} - NBR_{postfire} \end{split}$$

A burn index tries to capture the degree of burn at a location and is computed as a function of spectral values before and after the event.

 $NBR = rac{band2 - band7}{band2 + band7}$ $dNBR = NBR_{prefire} - NBR_{postfire}$

A commonly used index is *dNBR*

- Used for validation in previous studies, including MCD45

Dynamics of Fire Event

Region in North Brazil

Comparison with MCD45

Probability of burn

Questions?

Comparing with total burned areas reported by MCD45

What fraction of MCD45 do we recall?

Comparison of exclusive burned areas

