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Data science can shed light on climate change.

This is the vision behind climate informatics.
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Climate Informatics

First International Workshop on Climate Informatics
New York Academy of Sciences
Climate Informatics Wiki launched
“Climate Informatics” book chapter [M et al. 2013]
In the first 4 years: participants from over 16 countries, 28 states

Please join us as Climate Informatics turns 5!
September 24-26th at NCAR in Boulder CO.
NEW: Climate Informatics Hackathon! 3



Climate Informatics: problems & progress

[Banerjee & M, NIPS 2014 Tutorial]

1. Past: Paleo-climate reconstruction

What was the climate before we had thermometers?

2. Local: Climate downscaling
What climate can | expect in my own backyard?

3. Spatiotemporal: Space and time

How to capture dependencies over space and time?
4. Future: Climate model ensembles

How to reduce uncertainty on future predictions?

5. Tails/impacts: Extreme events
What are extreme events and how will climate change affect them?



Climate Model Ensembles




Climate models (GCMs)
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Scale resolution problem
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Intergovernmental Panel on Climate Change

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report, 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Fifth Assessment Report, September 2013. Over 830 authors.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate
Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia
(Italy), Max Planck Institute (Germany), Meteorological Institute at the University of Bonn
(Germany), Meteorological Research Institute (Japan), Model for Interdisciplinary
Research on Climate (Japan), National Center for Atmospheric Research (Colorado),
among others.



IPCC findings: human influence on climate

Black: true observations.
Orange/red: Climate model simulations with human-induced greenhouse gasses.
Blue: Climate model simulations without human-induced greenhouse gasses.
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Modeling future scenarios
4

Ensemble Range:
i 90%
| 85%
st N
- e Constant Emissions
) . 50%
> |
£
Eo2t
©
s
m . .
® Zero Emissions
=
a1
©
0
Q -————-————-— ———————
G | A ST eSS
| Constant Forcing

1950 2000 2050 2100 2150
Black: True observations (until 2006). Year
Orange/red: Constant emissions.
Grey: Constant atmospheric composition (constant forcing).
Blue: Zero emissions starting 2010 (impossible). credit: IPCC 2013



Global mean temperature anomalies
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Improving predictions of the IPCC ensemble

* Coupled Model Intercomparison Project (CMIP)
[Meehl et al., Bull. AMS, ‘00]

* No one model predicts best all the time, for all variables.

* Average prediction over all models is better predictor than any
single model. [Reichler & Kim, Bull. AMS ‘08], [Reifen & Toumi, GRL ’09]

* Bayesian approaches in climate science e.g. [Smith et al. JASA ’08]

* |IPCC held 2010 Expert Meeting on how to better combine model
predictions.

Can we do better, using Machine Learning?

Challenge: How should we predict future climates?

— While taking into account the multi-model ensemble predictions
12



Ensembles used in climate science

 Ensembles of opportunity
— Different models from different modeling groups, e.g. the IPCC ensemble

* Initial condition ensembles
— Perturb initial conditions of a single model
— Significant changes possible (cf. Butterfly Effect)

— “Pure ensemble” — perturb only last few significant digits of an initial
condition. Changes the weather but should not change the climate. Used to
robustify estimates of climate.

* Perturbed physics ensembles (PPE)
— Change parameter values of a single model
— Can create drastic changes in predictions

NOTE: weather forecasting also makes use of ensembles (e.g. Bayesian model
averaging).
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Contributions

* Tracking Climate Models (TCM) [M, Schmidt, Saroha, & Asplund,
SAM 2011; NASA CIDU 2010]: Online learning with expert advice.

* Neighborhood-Augmented TCM (NTCM) [McQuade & M, AAAI
2012]: Extend TCM to model geospatial neighborhood influence.

* MRF-based approach [McQuade & M, submitted].

e Climate Prediction via Matrix Completion [Ghafarianzadeh & M,
Late-Breaking Paper, AAAI 2013]: use sparse matrix completion.
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Average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction

O U = = O

Model A

Model B

~

Model C

>

Model D
e\"’\ Ess‘#c‘, A\




Tradeoff: explore vs. exploit

Tradeoff: Quickly finding current best predicting model vs.
being ready to quickly switch to other models.

Tradeoff hinges on how often the identity of the best model
switches.
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Online learning: non-stationary data

Algorithm Learn-a. ‘
. —L(a,t)
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Learn-a Algorithm [M & Jaakkola, NIPS 2003]:

* Learns the switching rate: level of non-stationarity: a.

* Tracks a set of meta-experts, online learning algorithms, each with a
different value of the a parameter.
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Online learning: non-stationary data
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 [M & Jaakkola, 2003]: In a family of online learning algorithms, weight updates,
p,(i), equivalent to Bayesian updates of a generalized Hidden Markov Model.
— Hidden variable: identity of “best expert.”
— Transition dynamics, p(i [ j), model non-stationarity.

* [Herbster & Warmuth, 1998]: Fixed-Share algorithm models switching w.p. a.

. (1—a) 1=7
P(ilj;a) = 4, o
n—1 i F£ )
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Incorporating neighborhood influence

[McQuade & M, AAAI 2012]
* Climate predictions are made at higher geospatial resolutions.

* Run instances of Learn-a (variant) on multiple sub-regions that
partition the globe.

 Model neighborhood influences among geospatial regions.
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Incorporating neighborhood influence

Neighborhood-augmented Learn-a.
Non-homogenous HMM transition dynamics:

(1—a) if i=k

Pli|k «a)= (1—75) + Z P,
7 SGS ) if 1£k

S(r) - neighborhood scheme: set of “neighbors” of region r
* P, (i) - probability of expert (climate model) i in region s

* [ -regulates geospatial influence

 Z-normalization factor
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MRF-based approach

Geospatial lattice

[McQuade & M, submitted]

Time t
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MRF-based approach
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MRF-based approach
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Climate Prediction via Matrix Completion

[Ghafarianzadeh & M, Late-Breaking Paper, AAAI 2013]

 Goal: combine/improve the predictions of the multi-model ensemble
of GCMs, using sparse matrix completion.

 Like TCM approaches: exploits past observations, and the predictions
of the multi-model ensemble of GCMs.

 Unlike TCM approaches: the learning approach is batch, unsupervised.

 Matrix completion has been widely used in sparse problems, e.g.
predicting user movie ratings (cf. Netflix).

e We apply [Keshavan, Montanari & Oh, JMLR "10] OptSpace algorithm:
minimization of nuclear norm; uses spectral techniques and manifold
optimization.

 Proof of concept for using matrix completion for climate prediction.



Climate Prediction via Matrix Completion

 Create a sparse (incomplete) matrix from climate model
predictions and observed temperature data.

* Apply a matrix completion algorithm to recover it.
* Yields predictions of unobserved temperatures.

Observed
Temperature

=N !
L=V i

Climate
Model Predictons: ==
Subset A

[

Climate
Model Predictons:
Subset B

1901 1902 1503 - 1998 1999 2000 2001 - 2100

Year



Yalidation for years 2005-2012
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Yalidation for years 2000-2012
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Yalidation for years 1990-2012
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Yalidation for years 1980-2012
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Yalidation for years 1970-2012
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Outlook

These results suggest some low intrinsic dimensionality.

We induced some sparsity in the input matrix
— Need not ensure low intrinsic dimensionality

[Jia, DelSole & Tippett, J. Climate ‘13] also suggest low intrinsic
dimensionality:

— Only a small number (~2) climatological “predictive components” [DelSole &
Tippett, Rev. Geophys. ‘07] determine the predictive “skill” of climate models
(measured w.r.t. observations).

* General warming trend, and El Nifio-Southern Oscillation

GCM ensemble (or subsets) as lower dimensional subspace

— Can serve as a proxy for the high dimensional, complicated (dependencies,
redundancies) space of climatological components in each GCM.

Suggests future work on tracking a small subset of the ensemble.
— Subset can change over time and space



Ongoing/future work

* Tracking a small subset of the ensemble, varying over time and
space

* Multi-task approach to combining multiple prediction lead-times

* Applications to seasonal and sub-seasonal prediction
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Climate Extremes
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How to define extremes?

@ Threshold in single variable [IPCC special report 2012, p.4]
@ Multiple degrees of severity

@ Related to multiple variables (complex extreme events)
@ Accumulation of non-extremes [IPCC 2012, p.6]

@ Subject to local climate characteristics [IPCC 2012, p.7]
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Topic modeling approach

[Tang & M, Climate Informatics 2014]

otels Mode
Models Statistical Models ode

Extreme and Non- I
extreme values Extreme values Data type

Single variable Multiple variables Variables
Single event type Multiple event types Events




Climate topic modeling
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Climate topic modeling using LDA

o \Multi(6) ‘ P(L,|t,, B)

-

* [:number of spatial regions

* N:number of observations in region

* t :climate topic

* [ climate descriptor: discretized observed climate variable

Dirichlet prior on 0




Qualitative evaluation: Sahel drought
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Ongoing/future work on extreme events

 What are the effects of climate change on extreme events,
especially regional?

 How will distributions of relevant variables change with climate
change?

* Detecting/predicting climate extremes, anomaly detection

* Real-time learning from data streams, tracking extreme events

44
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Resources

5% International Workshop on Climate Informatics, 2015
www2.cisl.ucar.edu/events/ci2015

Climate Informatics: wow.climateinformatics.org

— Links to resources, Climate Informatics workshops, online community

Climate Informatics Wiki (with data sets)
sites.google.com/site/lstclimateinformatics

IPCC AR5 Report: www.ipcc.ch/report/ar5/

WCRP Grand Challenges:
www.wcrp-climate.orqg/grand-challenges
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