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Highlights

» Public engagement with science and technology :
— Coursera MOOC, “From GPS and Google Maps to Spatial Computing”,

— reached 21,844 participants across 182 countries

« Enhanced infrastructure for education
— Interdisciplinary survey paper on spatiotemporal change footprint discovery
— Encyclopedia of GIS (Springer, 2"d Edition): Multiple articles on climate change
— APAJ/IEEE Computing in Sc. & Eng. special issue on “Computing and Climate”

« Enhanced infrastructure for research
— Spatial decision trees can help improve wetland maps for climate models
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Highlights

« Understanding

— Large semantic gap between Data Science and Climate Science
« Data Science results are hard to interpret in Climate Science

— Data Science assumptions violate laws of physics
* unnecessary errors, e.g., salt and pepper noise

e Concepts:
— Physics-Guided Data Mining concepts are potentially transformative
— EX. Spatial Decision Trees: explicit physics (e.g., continuity) to wetland mapping
— EX. Intervals of Persistent Change detection uses Physics (e.g., violation of continuity)
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Spatial Decision Tree: Motivation
« Wetland mapping:

— Climate Change: wetlands — major source of methane!
— manage natural disasters, defense against hurricanes, buffer of floods.
— maintain biodiversity, habitats to wildlife species
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Wetland Mapping Example
Input: Output:

test VAN

() aerial photo (c) true classes (d) DT prediction
. wetland [ dry land

(a) aerial photo

Training samples: upper half
Test samples: lower half
Spatial neighborhood:

DT: decision tree
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Challenges

Spatial autocorrelation effect

— samples violate i.i.d. assumption

— salt-and-pepper noise (white circles)
Spatial anisotropy

— asymmetric spatial neighborhood (blue circle)
Spatial heterogeneity

— areas with the same features correspond to
distinct class labels (white circle)

High computational cost

— large amount of focal computation with St
different spatial neighborhoods sizes feature maps

Ground truth classes Decision tree prediction

ground truth
wetland [ dry land
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Problem Statement

« Given:
— training & test samples from a raster spatial framework
— spatial neighborhood, its maximum size

* Find:
— a (spatial) decision tree
* Objective:

— minimize classification error and salt-and-pepper noise
« Constraint:
— training samples are contiguous patches
— spatial autocorrelation, anisotropy, and heterogeneity exist
— training dataset can be large with high computational cost
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Example with Decision Tree

Input: Output:
ID|f,|f class L
Al3 3 rod decision tree
B|l3]|3 red
cli1]2
D|3]|1 red
E| 311 red
F|]3]1 red
G| 313 red
H]1]2
11112
J]13]1 red
K|l]11]1 red
L|3]1 red
M[1]2
N|]1]2
Ol 3]|1 red
Pl 3]1 red
Q] 3]1 red
R|l111]1 red

salt-and-pepper noise pixel K
from decision tree

In this example, Gamma index ['; on feature f;
is unique. Most often, I'; is computed on the fly. UNIVERSITY OF MINNESOTA
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Related Work Summary

single decision tree

/\

traditional decision tree  spatial decision tree

Existing Work Proposed Work
Tree local feature test & focal feature test & spatial
information gain: information gain:
Ensemble bootstrap sampling: geographic space partitioning:
random forest ensemble spatial ensemble

ensemble of decision trees
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Proposed Approach — Focal Test

Local

Focal

Zonal

 Focal feature test

— Test both local and focal (neighborhood)
information

— focal test uses local autocorrelation
statistics, e.g., Gamma index

M UNIVERSITY OF MINNESOTA

Driven to Discover*




Proposed Approach - 2

|
3(3|3 p.30.30.3
. . 3|1]3 D.3-1p3
« tree traversal direction depends on both local and 3[3]3 30,303
focal (neighborhood) information (a) feature f* (b) focal function [~

V)

« focal test uses local autocorrelation statistics, e.g.,

. -1/-1)-1 FIF|F
Gamma index (I') f1]1 FlT]F
-1)-1]1 F FIF
. (c) indicator/ (' < 1) (Il <0
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W;; is adjacency matrix element |
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(i) local tree prediction (j) focal free prediction




Example — Focal Tests

traditional decision tree spatial decision tree
inputs: table of records inputs: feature maps, class map
o[ || [class yes % no feature f; focal function I';
Cl1l]2 1 | green
Hl1] 2 1 | green green red . 1]1]1)1 i 1
| 112 1 |green 111(1|1 1
Kl1]1] -1 red .. . . 1111111111
M| 1] 2 1 green . . . . -
NJ]1121] 1 |oreen feature f *
RI1f1f -1 [ red = = = (f,=1)*(,20) >
Al313] L | red 21111 A
B3] 3 1 red . . . 2111111 red
D|3 1] 1 | red G
E|[3 1] 1 | red 111(11(1 A J
FI3]a1] 1 d '
e :d predicted map class map B K
J 3] 1] 1 | red D L
L 31| 1 | red E O
IR E
re
Q13111 1 red _ _ G Q
pixel id

adaptive neigh., 3by 3  predicted map
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Evaluation: Case Study

e Questions to answetr:

— SDT v.s. DT - classification accuracy
— SDT v.s. DT - salt-and-pepper noise
— Computational scalability of SDT

e Dataset:

— Chanhassen, MN (wetland mapping)
« 2 classes: wetland, dry land

» features: high resolution (3m*3m) aerial photos
(RGB, NIR, NDVI) in 2003, 2005, 2008

* Training set: randomly select circular patches; Test
set: remaining pixels on the scene; Three scenes
are used.

« Max neighborhood size: 11 pixels by 11 pixels

Study Area:
City of Chanhassen
Carver and Hennepin

County, MN

tch si ber of patch
pac'],s'ze N o A Chanhassen, MN

remote sensing images—q training patches F. LTDT LeamejL — | TDT
4 ¢

max neigh size =——#| FTSDT Leamer F» FTSD: test set, map

analysis: accuracy, salt
and pepper noise
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Wetland Mapping Comparison — Scene 1
Output:

test VAN

(b) aerial photo  (c) true classes
. wetland [ dry land

(a) aerial photo

Training samples: upper half
Test samples: lower half
Spatial neighborhood:

(d) DT prediction (e) SDT prediction

DT: decision tree
SDT: spatial decision tree
(11x11 neighborhood)
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Classification Performance — Scene 2

decision tree (DT) spatial decision tree (SDT)

true wetland
true dryland
false wetland
false dryland

Trends:
1.DT: salt-and-pepper noise
2.SDT improve accuracy, salt-and-pepper noise levels
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Presenter
Presentation Notes
Post processing issue: rely on accuracy of dt output
Preprocessing issue: risk losing information due to smoothing, and leading to overfitting (patch of errors)


Evaluation: Classification Performance

Classification accuracy and salt-and-pepper noise level

Model Confusion Matrix Prec. | Recall | F measure | Autocorrelation
DT 99,141 10,688 0.81 0.75 0.78 0.87
15,346 45,805
SDT 99,390 10,439 0.83 0.83 0.83 0.93
10,618 50,533
Significance test between confusion matrices.
Model | Khat | Khat Variance | Z-score | significance
DT 0.66 3.6*10° o
26.8 significant
SDT | 0.73 3.0*10°

Spatial decision tree reduces salt-and-pepper noise and misclassification errors,
compared with decision trees.
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Computational Bottleneck Analysis

o
Al [ focal computation Analysis:
B other 1. focal computation takes the
vast majority of the time

o
JP‘? 1 2. focal computation cost increases
- faster with the training set size
22
6]
o Focal computation is the
= bottleneck!

o |

S

o

N

o = 0 B

1400 2800 4200 5600 7000
Training sample size
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Incremental Update Approach

Key ldea: reduce redundant focal computation by reusing results across
candidate test thresholds I'(f < )

9|99 l-1]-1]-1 .06

919|9]|-1]-1]-1]-1] [06[o75 o8] 05
8|7|6|-1]-1]-1|-1||1|1 -1(-1/-11/-1||0.60.75
415|155 |-1|-1|-1(-1j[1]|1]|1 -1(-1)-1)-1(| 1|1

(a) feature values (b) indicators, focal values for =1 (c) indicators, focal values for =2

11-11-11-1] [-0.330.2
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1
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PR |

candidate & 11(-1(-1(-1] foss02| 1|1 03302] 111
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111 -0.2/0.25 1 | 1
1|1

6,7, 8} 11-11-1 0.5
p_ 2 Wil -1]-1]-1]-1] pagos .02 1|1
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time cost (s)
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Evaluation of Computational Cost

1

Ng = 50, Sprax = 5, Ng = 256 S Notation of symbols
F # of features (12)
-~ baseline algorithm > N # of samples
—*— refi Igorith g .
refined algorithm Ny # of distinct
! feature values
Sax max neigh size
B No min node size
-‘E.l
- "Er’ )
’E.‘ ) . - . .
g g % - sk ¥~ | The refined algorithm significantly
2000 4000 6000 8000 10000 12000 reduces computational cost.

Number of training samples N
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Conclusions

* Ignoring auto-correlation leads to errors, e.g., salt-n-pepper noise

* Proposed a novel spatial decision tree approach with focal tests

« Evaluation shows that proposed method reduced salt-n-pepper noise
— And improved classification accuracy

» Designed computational refinements to improve scalability

M UNIVERSITY OF MINNESOTA

Driven to Discover*




Publications on Spatial Decision Trees

[1] Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran: Focal-Test-Based Spatial
Decision Tree Learning. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 27(6): 1547-1559 (2015)

[2] Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran: Focal-Test-Based Spatial
Decision Tree Learning: A Summary of Results. IEEE International Conference on
Data Mining (ICDM) 2013: 320-329

[3] Z. Jiang, S. Shekhar, P. Mohan, J. Knight, and J. Corcoran. "Learning spatial
decision tree for geographical classification: a summary of results.” International
Conference on Advances in GIS, pp. 390-393. ACM, 2012.

[4] Z. Jiang, S. Shekhar, A. Kamzin, and J. Knight. "Learning a Spatial Ensemble of
Classifiers for Raster Classification: A Summary of Results.” IEEE International
Conference on Data Mining Workshop, IEEE, 2014.

M UNIVERSITY OF MINNESOTA

Driven to Discover*




Challenges Revisited

Spatial autocorrelation effect

— samples violate i.i.d. assumption

— salt-and-pepper noise (white circles)
Spatial anisotropy

— asymmetric spatial neighborhood (blue circle)
Spatial heterogeneity

— areas with the same features correspond to
distinct class labels (white circle)

High computational cost

— large amount of focal computation with St
different spatial neighborhoods sizes feature maps

Ground truth classes Decision tree prediction

ground truth
wetland [ dry land
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Future Work

« Key idea I: focal feature test

— tree traversal direction depends on both local and focal (neighborhood) information
— focal test uses local autocorrelation statistics, e.g., Gamma index

o Key idea ll: spatial information gain (SIG)
— SIG = Info. Gain * a + Spatial Autocorrelation * (1 — a)

— tree node test selection depends on both class purification and autocorrelation
structure

« Key idea lll: spatial ensemble of local trees
— geographic space partitioning, learn local classifiers
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Proposed Approach: Spatial Ensemble

traditional ensemble spatial ensemble
(random forest) (spatial forest)
1. assume i.i.d. distribution 1. assume spatial heterogeneity
2. bootstrap sampling 2. spatial partitioning
3. learn a tree from one sampling 3. learn local tree model in each partition

with random feature subsets
es ; ; no %
yred yes no
red
yes ; E no ;; no
ed J/ yes no yes no \ YES
|

red red red
NV S
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one feature image

=

} .’: ]

partition P1 partition P2 prediction in Pl

e 4 s ' L i | BiE - TRt
ground truth g single DT prediction spatial ensemble g random forest
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