Spatial Decision Tree: A Novel Approach to Land-Cover Classification

Zhe Jiang¹, Shashi Shekhar¹, Xun Zhou¹, Joseph Knight², Jennifer Corcoran²

¹Department of Computer Science & Engineering ²Department of Forest Resources

University of Minnesota, Twin Cities

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

<u>Highlights</u>

- Public engagement with science and technology :
 - Coursera MOOC, "From GPS and Google Maps to Spatial Computing",
 - reached 21,844 participants across 182 countries
- Enhanced infrastructure for education
 - Interdisciplinary survey paper on spatiotemporal change footprint discovery
 - Encyclopedia of GIS (Springer, 2nd Edition): Multiple articles on climate change
 - APA/IEEE Computing in Sc. & Eng. special issue on "Computing and Climate"
- Enhanced infrastructure for research
 - Spatial decision trees can help improve wetland maps for climate models

<u>Highlights</u>

- Understanding
 - Large semantic gap between Data Science and Climate Science
 - Data Science results are hard to interpret in Climate Science
 - Data Science assumptions violate laws of physics
 - unnecessary errors, e.g., salt and pepper noise
- Concepts:
 - Physics-Guided Data Mining concepts are potentially transformative
 - Ex. Spatial Decision Trees: explicit physics (e.g., continuity) to wetland mapping
 - Ex. Intervals of Persistent Change detection uses Physics (e.g., violation of continuity)

Spatial Decision Tree: Motivation

- Wetland mapping:
 - Climate Change: wetlands major source of methane¹
 - manage natural disasters, defense against hurricanes, buffer of floods.
 - maintain biodiversity, habitats to wildlife species

Greenhouse Gas Methane

5

flood control

wildlife habitats

¹Bryan Walsh, How Wetlands Worsen Climate Change, Time, Magazine, 2010

Wetland Mapping Example

Input:

Output:

Training samples: upper half Test samples: lower half Spatial neighborhood:

DT: decision tree

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Challenges

- Spatial autocorrelation effect
 - samples violate i.i.d. assumption
 - salt-and-pepper noise (white circles)
- Spatial anisotropy
 - asymmetric spatial neighborhood (blue circle)
- Spatial heterogeneity
 - areas with the same features correspond to distinct class labels (white circle)
- High computational cost
 - large amount of focal computation with different spatial neighborhoods sizes

Ground truth classes Decision tree prediction

feature maps

ground truth

wetland

Problem Statement

- Given:
 - training & test samples from a raster spatial framework
 - spatial neighborhood, its maximum size
- Find:
 - a (spatial) decision tree
- Objective:
 - minimize classification error and salt-and-pepper noise
- Constraint:
 - training samples are contiguous patches
 - spatial autocorrelation, anisotropy, and heterogeneity exist
 - training dataset can be large with high computational cost

Example with Decision Tree

Input:

ID	f ₁	f ₂	class
Α	3	3	red
В	3	3	red
С	1	2	green
D	3	1	red
Е	3	1	red
F	3	1	red
G	3	3	red
Н	1	2	green
	1	2	green
J	3	1	red
Κ	1	1	red
L	3	1	red
М	1	2	green
Ν	1	2	green
0	3	1	red
Ρ	3	1	red
Q	3	1	red
R	1	1	red

In this example, Gamma index Γ_1 on feature f_1 is unique. Most often, Γ_1 is computed on the fly. $\mathbf{9}$

Output:

decision tree

predicted map

Α	В	С	D	Е	F
G	Н	T	J	Κ	L
Μ	Ν	0	Ρ	Q	R

salt-and-pepper noise pixel K from decision tree

UNIVERSITY OF MINNESOTA Driven to Discover™

Related Work Summary

single decision tree

traditional decision tree **spatial decision tree**

	Existing Work	Proposed Work
Tree	local feature test & information gain:	focal feature test & spatial information gain:
Ensemble	bootstrap sampling:	geographic space partitioning:

random forest ensemble **spatial ensemble** ensemble of decision trees

Proposed Approach – Focal Test

- Focal feature test
 - Test both *local* and *focal* (neighborhood) information
 - focal test uses local autocorrelation statistics, e.g., Gamma index

Proposed Approach - 2

- tree traversal direction depends on both *local* and *focal* (neighborhood) information
- focal test uses local autocorrelation statistics, e.g., Gamma index (Γ)
- neighborhood

$$\Gamma_i = \frac{\sum_j S_{i,j} W_{i,j}}{\sum_j W_{i,j}}$$

where:

i, j: pixel locations S_{i,j}: similarity between location i and j W_{i,i} is adjacency matrix element

Example – Focal Tests

traditional decision tree

inputs: table of records

ID	f ₁	f ₂	Γ ₁	class
С	1	2	1	green
Н	1	2	1	green
	1	2	1	green
Κ	1	1	-1	red
Μ	1	2	1	green
Ν	1	2	1	green
R	1	1	-1	red
А	3	3	1	red
В	3	3	1	red
D	3	1	1	red
Е	3	1	1	red
F	3	1	1	red
G	3	3	1	red
J	3	1	1	red
L	3	1	1	red
0	3	1	1	red
Ρ	3	1	1	red
Q	3	1	1	red

CDE

OPQ

K

R

В

Η

G

MIN

spatial decision tree

inputs: feature maps, class map

Evaluation: Case Study

• Questions to answer:

- SDT v.s. DT classification accuracy
- SDT v.s. DT salt-and-pepper noise
- Computational scalability of SDT
- Dataset:
 - Chanhassen, MN (wetland mapping)

patch size number of patches

FTSDT Learner

remote sensing images training patches

max neigh size •

- 2 classes: wetland, dry land
- features: high resolution (3m*3m) aerial photos (RGB, NIR, NDVI) in 2003, 2005, 2008
- Training set: randomly select circular patches; Test set: remaining pixels on the scene; Three scenes are used.

LTDT Learner

➡ FTSD**T** test set, map

I TDT I

analysis: accuracy, salt

and pepper noise

• Max neighborhood size: 11 pixels by 11 pixels

UNIVERSITY OF MINNESOTA Driven to Discover™

Wetland Mapping Comparison – Scene 1

Input:

Training samples: upper half Test samples: lower half Spatial neighborhood:

DT: decision tree SDT: spatial decision tree (11x11 neighborhood)

(d) DT prediction (e) SDT prediction

Output:

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Classification Performance – Scene 2

decision tree (DT)

spatial decision tree (SDT)

true wetland true dryland false wetland false dryland

Trends:

- 1.DT: salt-and-pepper noise
- 2.SDT improve accuracy, salt-and-pepper noise levels

UNIVERSITY OF MINNESOTA Driven to Discover™

Evaluation: Classification Performance

Classification accuracy and salt-and-pepper noise level

Model	Confusio	on Matrix	Prec.	Recall	F measure	Autocorrelation
DT	99,141 10,688		0.81	0.75	0.78	0.87
	15,346	45,805				
SDT	99,390	10,439	0.83	0.83	0.83	0.93
	10,618	50,533				

Significance test between confusion matrices:

Model	Khat	Khat Variance	Z-score	significance
DT	0.66	3.6*10 ⁻⁶		aignifiaant
SDT	0.73	3.0*10 ⁻⁶	20.8	significant

Spatial decision tree reduces salt-and-pepper noise and misclassification errors, compared with decision trees.

Computational Bottleneck Analysis

Analysis:

1. focal computation takes the vast majority of the time

2. focal computation cost increases faster with the training set size

Focal computation is the bottleneck!

UNIVERSITY OF MINNESOTA Driven to Discover™

Incremental Update Approach

Key idea: reduce redundant focal computation by reusing results across candidate test thresholds $\Gamma(f < \delta)$

1	9	9	9	1	-1	-1	-1	-1	0.6	1	1		1	-1	-1	-1	-(0.33	0.2	1	1
2	9	9	9	-1	-1	-1	-1	0.6	0.75	1	1		1	-1	-1	-1	-1	0.6	0.5	1	1
3	8	7	6	-1	-1	-1	-1	1	1	1	1		-1	-1	-1	-1	(0.6	0.75	1	1
4	5	5	5	-1	-1	-1	-1	1	1	1	1		-1	-1	-1	-1		1	1	1	1
									_	_		L								_	

(a) feature values (b) indicators, focal values for δ =1 (c) indicators, focal values for δ =2

1	-1	-1	-1
1	-1	-1	-1
1	-1	-1	-1
1	-1	-1	-1

-0.33	0.2	1	1
-0.2	0.25	1	1
-0.2	0.25	1	1
- 0.33	0.2	1	1

Driven to Discover^{ss}

 $W_{i,j}$ (d) indicators, focal values for $\delta=3$ (e) indicators, focal values for $\delta=4$

1

1

1

1

Evaluation of Computational Cost

Conclusions

- Ignoring auto-correlation leads to errors, e.g., salt-n-pepper noise
- Proposed a novel spatial decision tree approach with focal tests
- Evaluation shows that proposed method reduced salt-n-pepper noise
 - And improved classification accuracy
- Designed computational refinements to improve scalability

Publications on Spatial Decision Trees

 [1] Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran: Focal-Test-Based Spatial Decision Tree Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE) 27(6): 1547-1559 (2015)

[2] Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran: Focal-Test-Based Spatial Decision Tree Learning: A Summary of Results. **IEEE International Conference on Data Mining (ICDM)** 2013: 320-329

[3] Z. Jiang, S. Shekhar, P. Mohan, J. Knight, and J. Corcoran. "Learning spatial decision tree for geographical classification: a summary of results." **International Conference on Advances in GIS**, pp. 390-393. ACM, 2012.

[4] Z. Jiang, S. Shekhar, A. Kamzin, and J. Knight. "Learning a Spatial Ensemble of Classifiers for Raster Classification: A Summary of Results." **IEEE International Conference on Data Mining Workshop**, IEEE, 2014.

Challenges Revisited

- Spatial autocorrelation effect
 - samples violate i.i.d. assumption
 - salt-and-pepper noise (white circles)
- Spatial anisotropy
 - asymmetric spatial neighborhood (blue circle)
- Spatial heterogeneity
 - areas with the same features correspond to distinct class labels (white circle)
- High computational cost
 - large amount of focal computation with different spatial neighborhoods sizes

Ground truth classes Decision tree prediction

feature maps

ground truth

wetland

dry land

Future Work

- Key idea I: focal feature test
 - tree traversal direction depends on both *local* and *focal* (neighborhood) information
 - focal test uses local autocorrelation statistics, e.g., Gamma index
- Key idea II: spatial information gain (SIG)
 - SIG = Info. Gain * α + Spatial Autocorrelation * (1 α)
 - tree node test selection depends on both *class purification* and *autocorrelation* structure
- Key idea III: spatial ensemble of local trees
 - geographic space partitioning, learn local classifiers

Proposed Approach: Spatial Ensemble

traditional ensemble (random forest)

- 1. assume i.i.d. distribution
- 2. bootstrap sampling
- 3. learn a tree from one sampling with random feature subsets

spatial ensemble (spatial forest)

- 1. assume spatial heterogeneity
- 2. spatial partitioning
- 3. learn local tree model in each partition

UNIVERSITY OF MINNESOTA Driven to Discoversm

one feature image

ground truth

spatial cluster (islands) archipelagos

partition P1

partition P2

prediction in P1

