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Outline

• Graphical Models
– Bayesian learning
– Latent variable models
– Hidden Markov models

• Applications to Precipitation and Atmospheric Data Sets
– Non-homogeneous hidden Markov models for downscaling
– Grid-based graphical models for ITCZ detection

• Concluding Comments
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Graphical Models and Bayesian Estimation
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Spectrum of Machine Learning Techniques

• Predictive Modeling
– Predict Y given X, e.g., compute P [ Y | X]
– Emphasis on prediction accuracy, not so much on model interpretation

• Generative Modeling
– Model Y and X jointly, i.e., model P( Y, X )
– Emphasis both on prediction (e.g., for missing data) and interpretation
– Often use graphical models and Bayesian methods

• Pattern Finding
– Clustering, outlier detection, exploratory data analysis
– Can be used to support predictive and generative modeling
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Directed Graphical Models

Represent stochastic dependencies with a directed graph
Nodes = variables
Edges = direct dependencies
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Directed Graphical Models

Represent stochastic dependencies with a directed graph
Nodes = variables
Edges = direct dependencies

Joint distribution 
= product of conditional distributions

Why is this useful?
Representational language
Computational algorithms
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Computation of Conditional Distributions

?

X

V

W

?

Can use the graph structure + Bayes rule
to compute P(Z, Y | W) 
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Latent/Hidden Variable Models

• Example: modeling high-dimensional y
– Introduce latent variables z that simplify P(y)
– e.g., given latent variables, the y’s are approximately conditionally independent

• Interpretation of latent variables z
– Physical interpretation: 

• z is in principle measurable, e.g., Kalman estimation

– Exploratory interpretation:
• Discrete z, e.g., clustering of weather states, storm trajectories,
• Real-valued z, e.g., potential low-dimensional latent mechanisms, e.g., EOFs

– Agnostic interpretation:
• z’s are useful for approximation and modeling, not necessarily any interpretation
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Analyzing the InterTropical Convergence Zone (ITCZ)

Data:
3 hourly infra-red, 
1980-2009

24-hourly visible, 
1995 to 2008

Problem:
Limited availability of 
“data products”
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Example of Results

From 
Bain et al, JGR Atmospheres, 2010
Bain et al,  2011, Journal of Climate 
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Graphical Model for ITCZ Detection

Time (3 hour intervals)

Hidden state structure, one binary hidden 
state variable per pixel, ITCZ or not
(pixel observations not shown)
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States and Observations per Pixel
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Semi-Supervised Labeling
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Human-annotated labels

Henke et al, Remote Sensing of Environment, 2012
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Key Points about Graphical Models

• Builds probability models via conditional independence assumptions

• Graph representation
– Nodes represent variables of interest
– Edges (and absence) encode conditional independence assumptions 

• Computation
– Inference corresponds to propagating information on the graph
– Natural treatment of missing data and latent variables

• Bayesian view: 
– Parameters can also be treated as nodes in the graph
– Parameter estimation corresponds to computation in the graphical model
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Applications to Precipitation Data
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Daily Station Data from 
Northeast Brazil

90-day time series
24 years 
10 stations  
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Weather States from the Model 
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Composites of Wind Fields for each State
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Challenges in Precipitation Data Analysis

• Data quality
– Rain gauges: very sparse global coverage
– Satellites: limited temporal coverage, calibration issues

• Distributional characteristics
– Skewed, non-normal
– Extremes are very important: but limited data availability for modeling

• Temporal characteristics
– Bursty, seasonal (e.g., monsoon)
– Interannual variability poorly understood

• Spatial characteristics
– Spatial correlations are not isotropic, depend on many factors
– Significant regional differences (e.g., tropical versus non-tropical rainfall)
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Africa: 2,967

Rain Gauges

Land Area

Germany

Africa 11.7
million sq. 

miles

0.14

Germany: 4,133

Figure from Lisa Goddard, International Research Institute for Climate and Society
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Non-Homogeneous Hidden Markov Model for Downscaling

Zt+1

Ys,t+1

Large-Scale Inputs
(e.g., ENSO) Xt Xt+1

s = 1,…S s = 1,…S

Time (e.g., daily)



Padhraic Smyth: Climate Workshop, U Minnesota, Aug 2015: 42

Zt

Ys,t

Hidden State

Precipitation at
multiple stations

…with Parameters

Zt+1

Ys,t+1

Large-Scale Inputs
(e.g., ENSO) Xt Xt+1

s = 1,…S s = 1,…S

Time (e.g., daily)

γ

θ



Padhraic Smyth: Climate Workshop, U Minnesota, Aug 2015: 43

Non-Homogeneous Hidden Markov Model

• Transition probabilities vary as a function of exogenous variable x
– x = ENSO time-series, wind-shear index, etc
– Transition probability vector modeled as multinomial logistic function of X

– Sampler uses Polya-Gamma latent variable methods (Polson et al., JASA, 2013)
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Non-Homogeneous Hidden Markov Model

• Transition probabilities vary as a function of exogenous variable x
– x = ENSO time-series, wind-shear index, etc
– Transition probability vector modeled as multinomial logistic function of X

– Sampler uses Polya-Gamma latent variable methods (Polson et al., JASA, 2013)

• Emission distributions
– Mixture of delta function (no precipitation) + 2 exponentials
– Conditionally independent, station-specific
– Mixing weights are functions of additional exogenous variables (via GLM-probit)
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Examples of Inferred States

Probability of Occurrence
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Examples of Inferred States

Probability of Occurrence

Mean Intensity
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Simulated and
Actual Precipitation

Black dots = observed rainfall

Grey bands = 95% posterior intervals
from 1000 model simulations
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Simulated and
Actual Precipitation

Black dots = observed rainfall

Grey bands = 95% posterior intervals
from 1000 model simulations
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Distributional Checks

Bars = observed rainfall

Purple bands = 95% posterior intervals
from 1000 model simulations
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Observed and Simulated Spatial Correlations
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Effect of Input Variables
Red: simulations with variable’s max value
Blue: simulations with variable’s min value
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Concluding Comments
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Recent Trends in Machine Learning: Scalability

• Computation-intensive techniques such as MCMC were limited to relatively 
small data sets in the past

– This is no longer the case….

• Techniques for improving scalability
– Distributed sampling algorithms
– Approximate sampling methods

• Variational inference
• Operating on data subsamples

– Combining optimization and sampling

• Focus for climate scientists should be on model structure
– Inference should just be a “black box”, turn the crank…..
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Recent Trends in Machine Learning: Deep Learning

• Deep learning
– neural networks with multiple hidden layers designed for high-dimensional 

prediction problems
– Have recently been very successful in image and speech recognition tasks

• Useful for climate science? There are limitations…
– Typically very large amounts of labeled (classification) data
– Models can lack interpretability…very much “black box prediction”

• However….
– Significant research underway on developing unsupervised/latent variants
– Useful as feature extractors/detectors? whose outputs are integrated into spatio-

temporal models with probabilistic semantics
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Issues in Applying Machine Learning to Climate Science

• Emphasis on black-box predictive modeling
– Dominance of applications where retraining the model is cheap and easy

• Widespread stationarity assumptions
– Test data expected to be the same as training data

• The tyrany of tabula-rasa learning
– Using domain knowledge is not “cool”
– e.g., lack of knowledge of spatial topography in models

• Calibration
– Models don’t know what they don’t know



Padhraic Smyth: Climate Workshop, U Minnesota, Aug 2015: 58

A Deep Neural Network for Image Recognition
From Nguyen, Yosinski, Clune, ArXiv preprint, 2014
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Extrapolation
From Nguyen, Yosinski, Clune, ArXiv preprint, 2014
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From Nguyen, Yosinski, Clune, ArXiv preprint, 2014

Lack of Calibration
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Summary

• Graphical models provide a broad framework for building complex 
statistical models 

• The machine learning perspective on graphical models puts more 
emphasis on prediction and scalability (compared to statistics)

• For many climate science problems, graphical models (and Bayesian 
inference) tend to be a more natural fit than “black box” prediction 
models

• Advances in machine learning are promising, but its not clear yet what 
benefit they will provide to climate science
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