Graphical Latent Variable Models with Applications to Climate Data

Padhraic Smyth Department of Computer Science University of California, Irvine

Outline

• Graphical Models

- Bayesian learning
- Latent variable models
- Hidden Markov models

• Applications to Precipitation and Atmospheric Data Sets

- Non-homogeneous hidden Markov models for downscaling
- Grid-based graphical models for ITCZ detection
- Concluding Comments

Graphical Models and Bayesian Estimation

Spectrum of Machine Learning Techniques

• Predictive Modeling

- Predict Y given X, e.g., compute P [Y | X]
- Emphasis on prediction accuracy, not so much on model interpretation

• Generative Modeling

- Model Y and X jointly, i.e., model P(Y, X)
- Emphasis both on prediction (e.g., for missing data) and interpretation
- Often use graphical models and Bayesian methods

• Pattern Finding

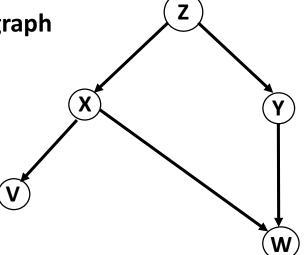
- Clustering, outlier detection, exploratory data analysis
- Can be used to support predictive and generative modeling

Directed Graphical Models

Represent stochastic dependencies with a directed graph

Nodes = variables

Edges = direct dependencies

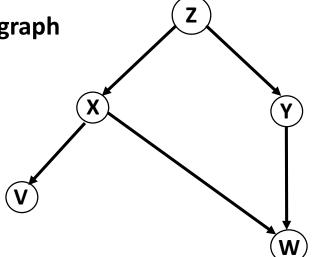


Directed Graphical Models

Represent stochastic dependencies with a directed graph

Nodes = variables

Edges = direct dependencies



Joint distribution

= product of conditional distributions

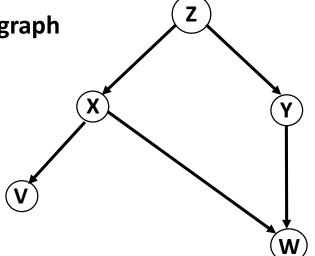
P(V, W, X, Y, Z) = P(V|X)P(W|X, Y)P(X|Z)P(Y|Z)P(Z)

Directed Graphical Models

Represent stochastic dependencies with a directed graph

Nodes = variables

Edges = direct dependencies



Joint distribution

= product of conditional distributions

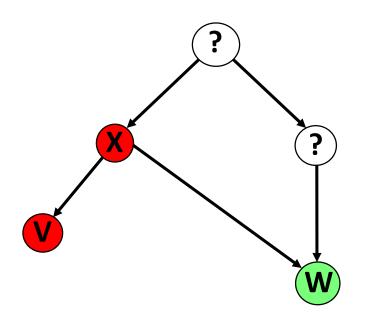
P(V, W, X, Y, Z) = P(V|X)P(W|X, Y)P(X|Z)P(Y|Z)P(Z)

Why is this useful?

Representational language

Computational algorithms

Computation of Conditional Distributions

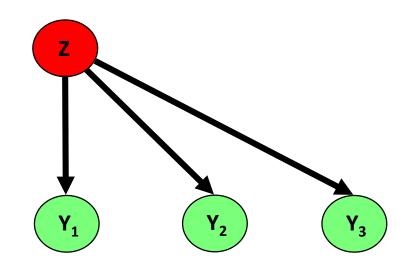


Can use the graph structure + Bayes rule to compute P(Z, Y | W)

Conditional Independence and Hidden Variables

Hidden variable

Observed variable



Latent/Hidden Variable Models

- Example: modeling high-dimensional y
 - Introduce latent variables z that simplify P(y)
 - e.g., given latent variables, the y's are approximately conditionally independent
- Interpretation of latent variables z
 - Physical interpretation:
 - z is in principle measurable, e.g., Kalman estimation
 - Exploratory interpretation:
 - Discrete z, e.g., clustering of weather states, storm trajectories,
 - Real-valued z, e.g., potential low-dimensional latent mechanisms, e.g., EOFs
 - Agnostic interpretation:
 - z's are useful for approximation and modeling, not necessarily any interpretation

Conditional Independence

Hidden variable

Observed variable

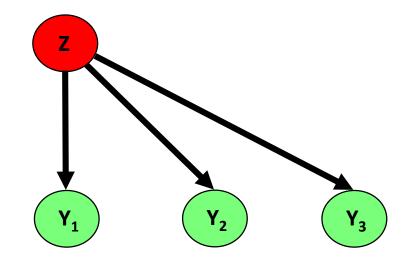


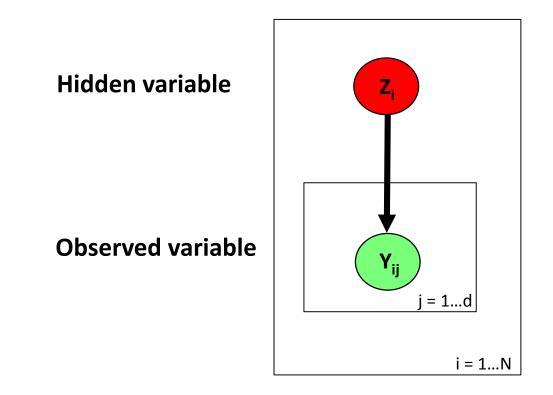
Plate Diagram

Hidden variable
Z

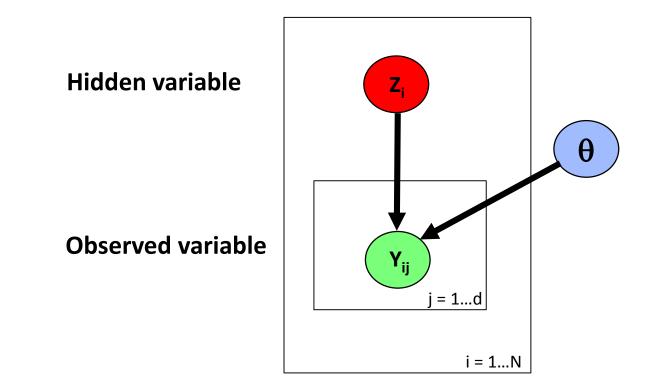
Observed variable
 y_j

j = 1...d

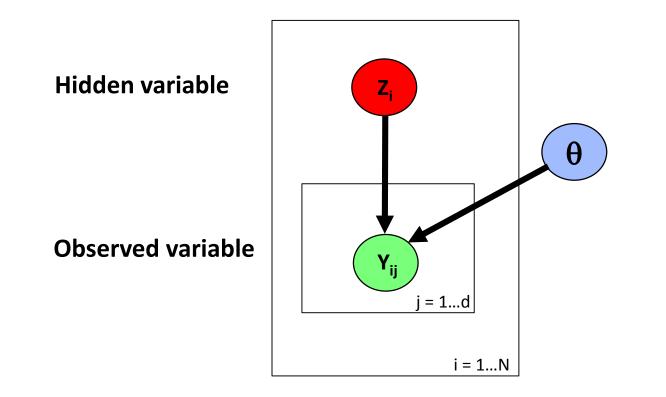
Multiple Observations



Parameters and Likelihood

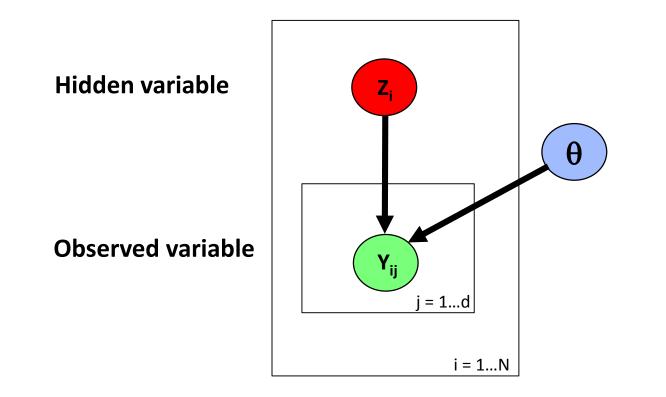


Parameters and Likelihood



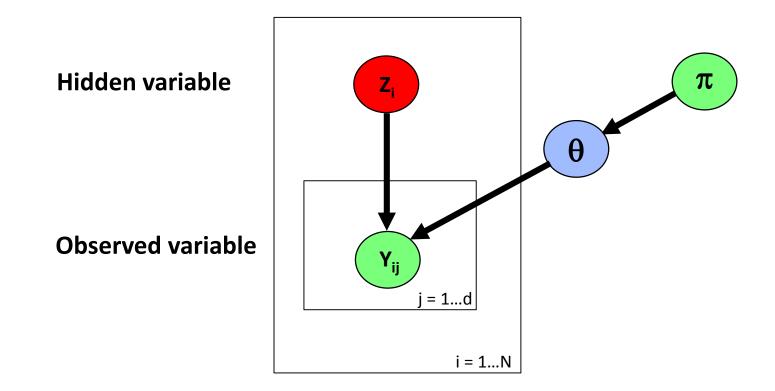
$$L(\theta) = P(Y|\theta, Z) = \prod_{i=1}^{N} \prod_{j=1}^{d} P(y_{ij}|z_i, \theta)$$

Parameters and Likelihood



$$L(\theta) = P(Y|\theta, Z) = \prod_{i=1}^{N} \prod_{j=1}^{d} P(y_{ij}|z_i, \theta)$$

Priors and Bayesian Estimation



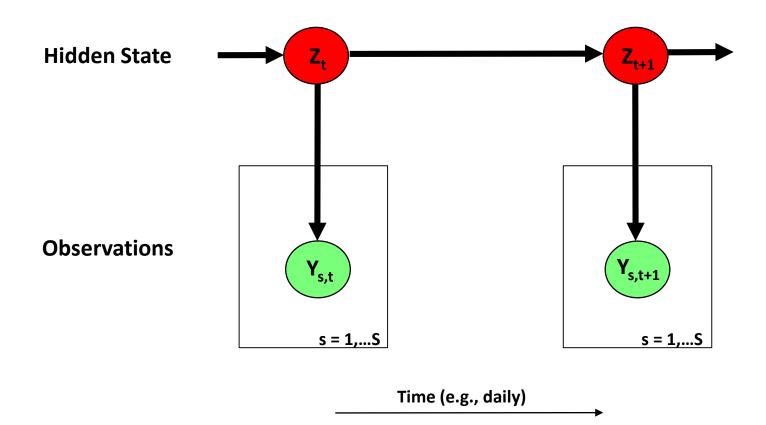
$P(\theta|Y, Z, \pi) \propto P(Y|\theta, Z)P(\theta|\pi)$

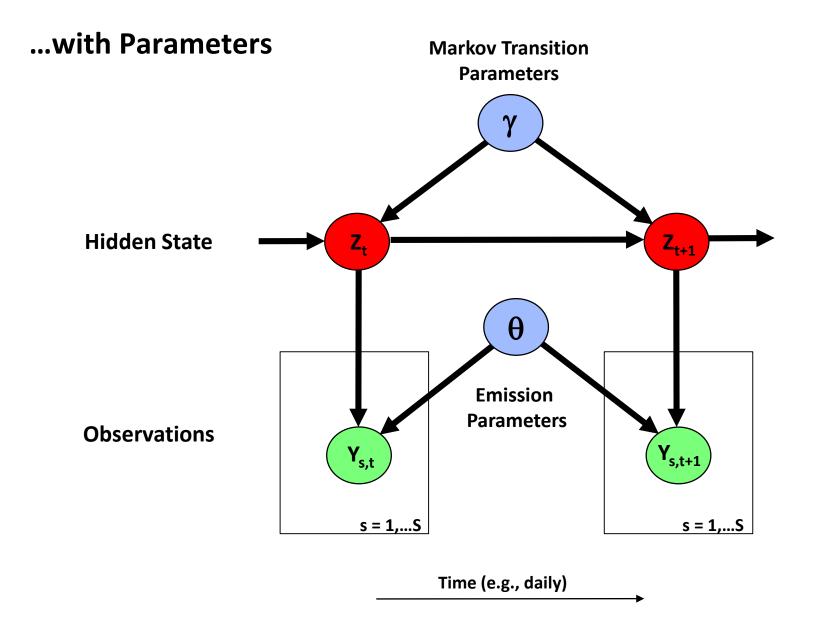
Priors and Bayesian Estimation



$$P(\theta|Y,\pi) \propto \left(\sum_{Z} P(Y|\theta,Z)P(Z)\right) P(\theta|\pi)$$

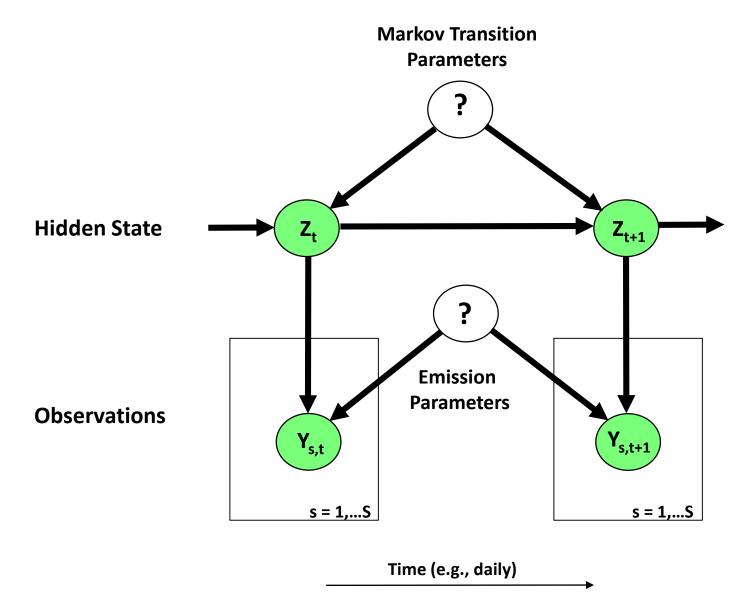
Hidden Markov Model





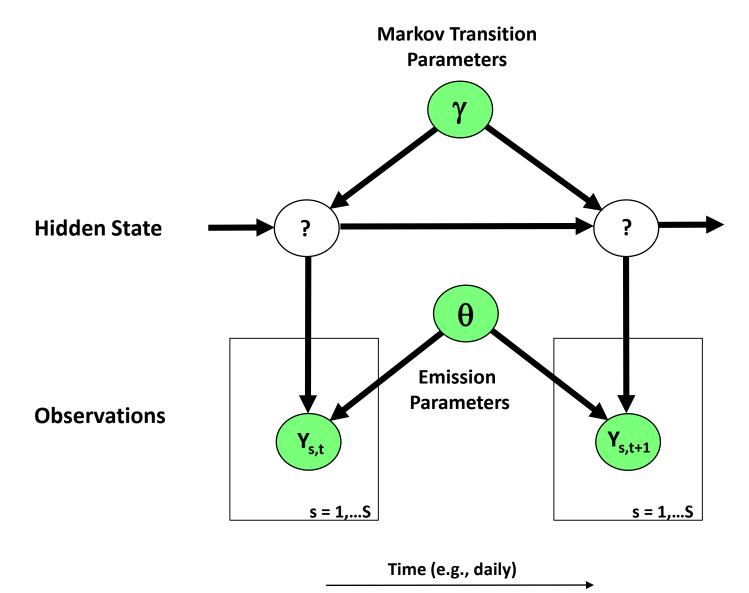
MCMC: Sample Parameters given Hidden States

(Scott, JASA, 2002)



MCMC: Sample Hidden States given Parameters

(Scott, JASA, 2002)

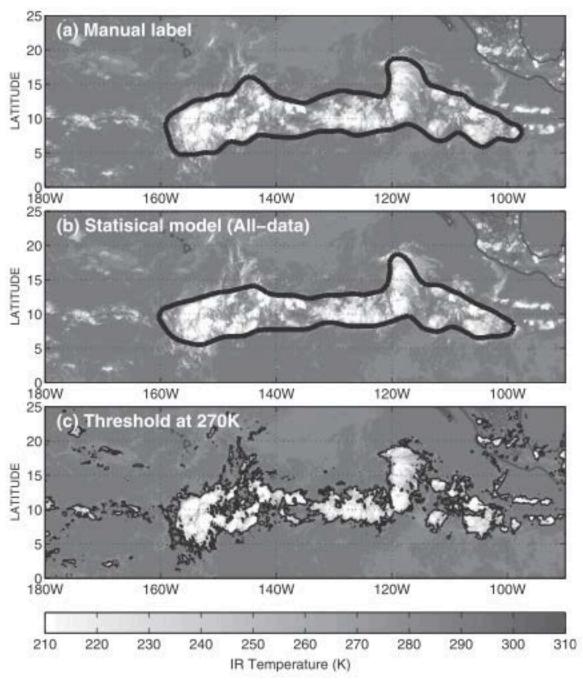


Analyzing the InterTropical Convergence Zone (ITCZ)

Data: 3 hourly infra-red, 1980-2009

24-hourly visible, 1995 to 2008

Problem: Limited availability of "data products"

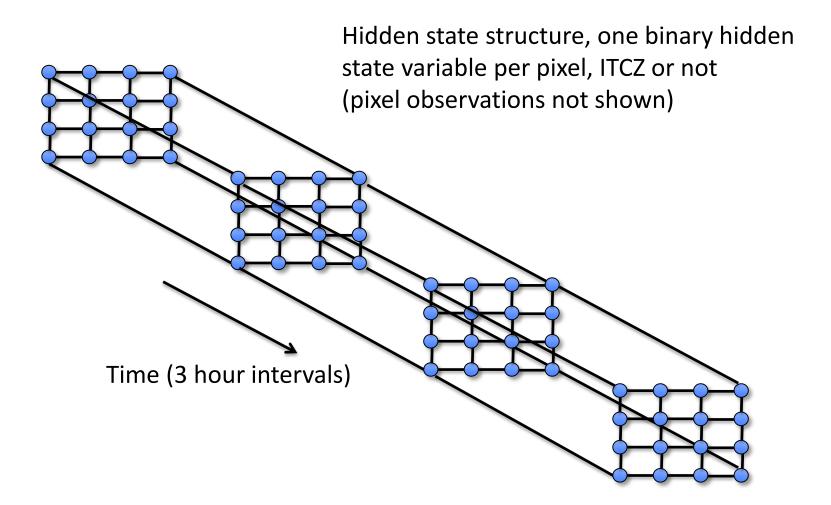


Example of Results

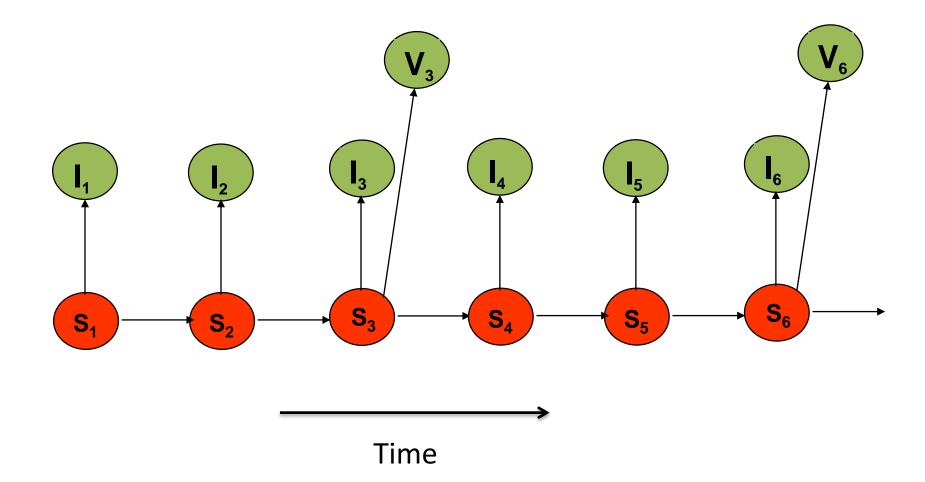
From

Bain et al, *JGR Atmospheres*, 2010 Bain et al, 2011, *Journal of Climate*

Graphical Model for ITCZ Detection

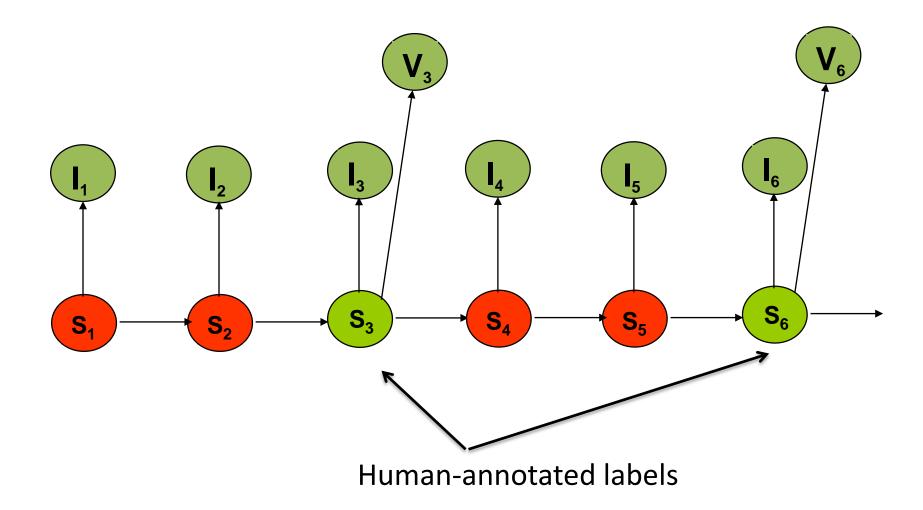


States and Observations per Pixel



Semi-Supervised Labeling

Henke et al, Remote Sensing of Environment, 2012



Key Points about Graphical Models

• Builds probability models via conditional independence assumptions

• Graph representation

- Nodes represent variables of interest
- Edges (and absence) encode conditional independence assumptions

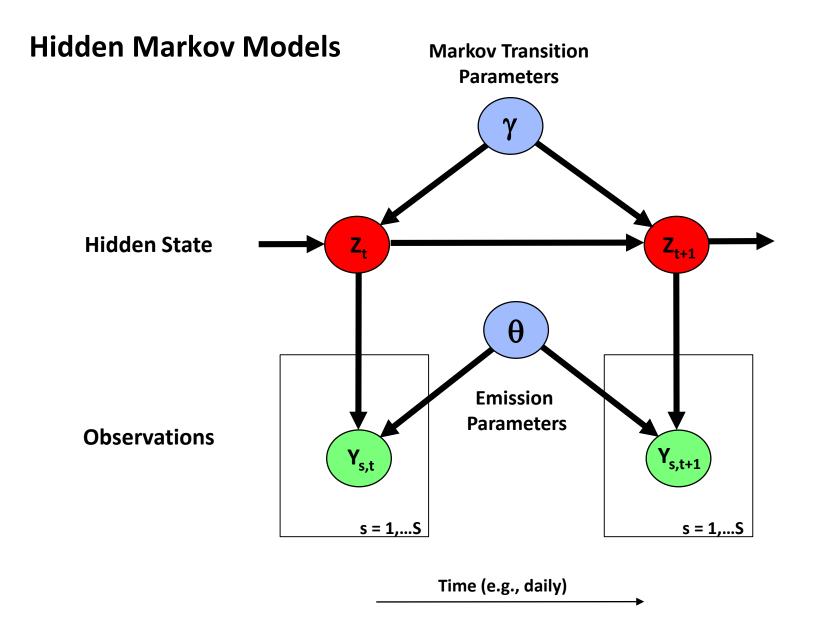
• Computation

- Inference corresponds to propagating information on the graph
- Natural treatment of missing data and latent variables

• Bayesian view:

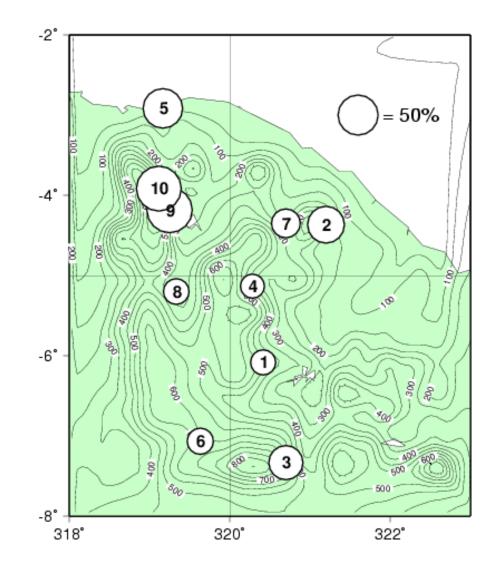
- Parameters can also be treated as nodes in the graph
- Parameter estimation corresponds to computation in the graphical model

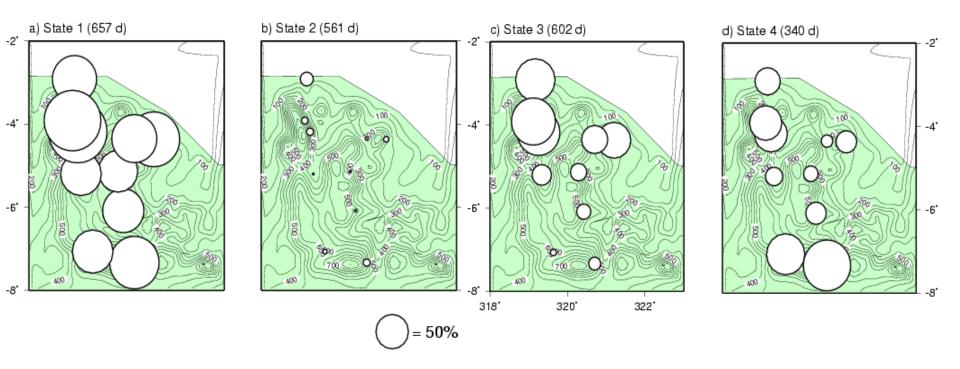
Applications to Precipitation Data



Daily Station Data from Northeast Brazil

90-day time series 24 years 10 stations



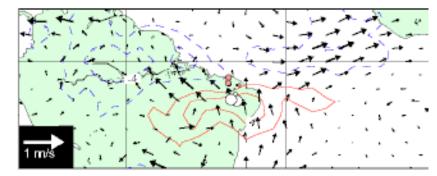


Weather States from the Model

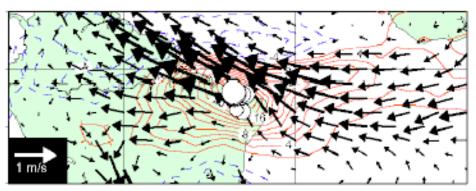
Composites of Wind Fields for each State

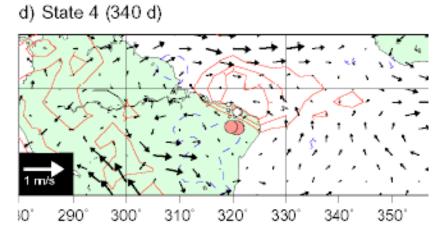
a) State 1 (657 d) = +50% = -50%

c) State 3 (602 d)



b) State 2 (561 d)





Challenges in Precipitation Data Analysis

• Data quality

- Rain gauges: very sparse global coverage
- Satellites: limited temporal coverage, calibration issues

• Distributional characteristics

- Skewed, non-normal
- Extremes are very important: but limited data availability for modeling

• Temporal characteristics

- Bursty, seasonal (e.g., monsoon)
- Interannual variability poorly understood

• Spatial characteristics

- Spatial correlations are not isotropic, depend on many factors
- Significant regional differences (e.g., tropical versus non-tropical rainfall)

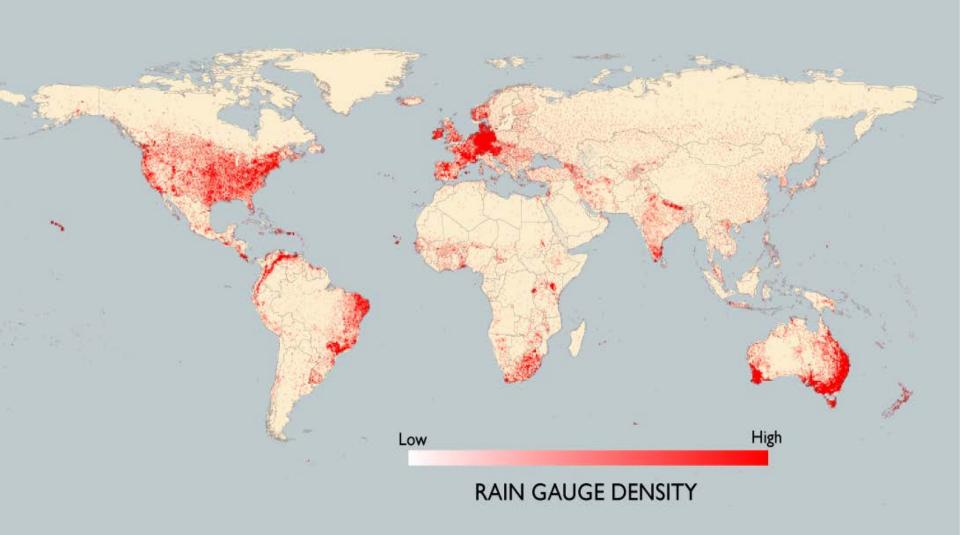
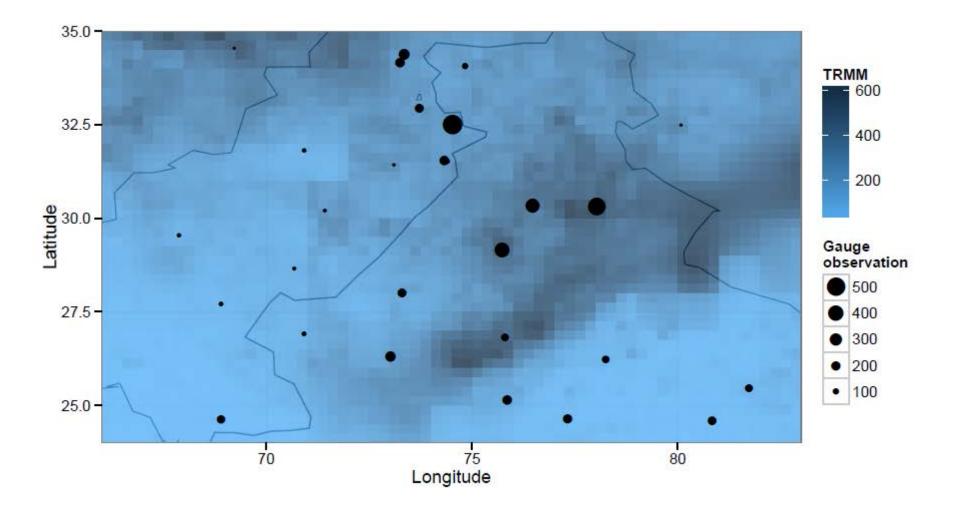
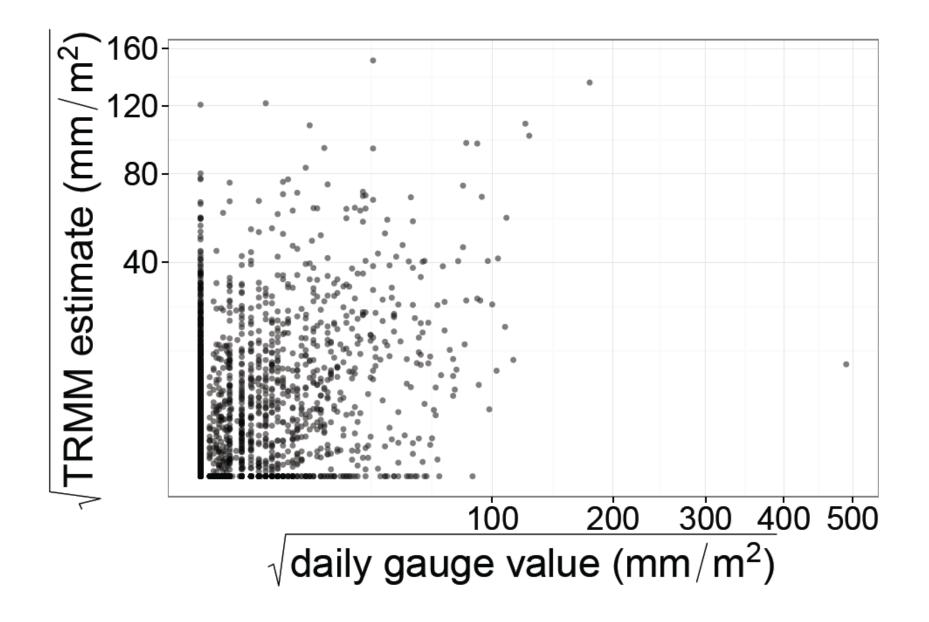


Figure from Lisa Goddard, International Research Institute for Climate and Society



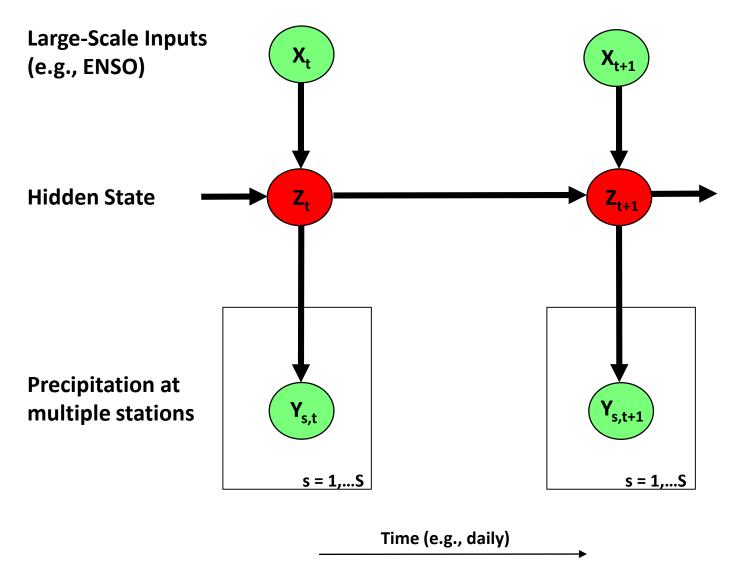
Figure from Lisa Goddard, International Research Institute for Climate and Society



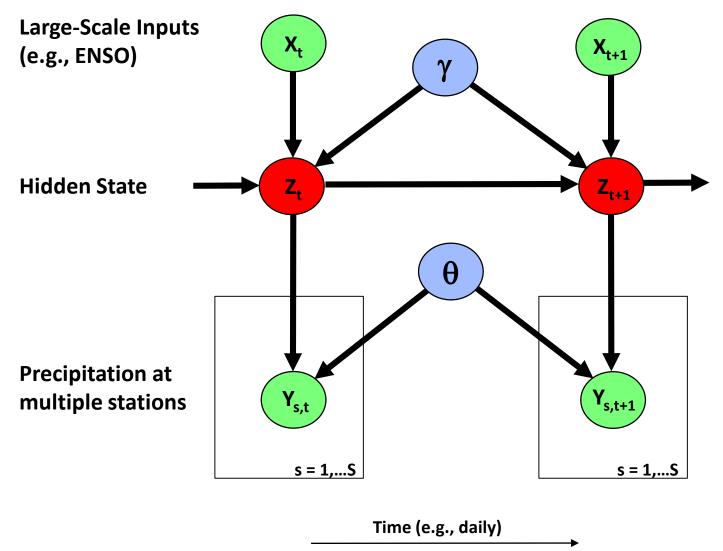


UCIrvine

Non-Homogeneous Hidden Markov Model for Downscaling



...with Parameters



Non-Homogeneous Hidden Markov Model

- Transition probabilities vary as a function of exogenous variable x
 - x = ENSO time-series, wind-shear index, etc
 - Transition probability vector modeled as multinomial logistic function of X

$$P(z_t = j | z_{t-1} = i, \boldsymbol{x}_t, \boldsymbol{\zeta}) = \frac{\exp(\xi_{ij} + \boldsymbol{x}_t \boldsymbol{\rho}_i)}{\sum_{m=1}^{K} \exp(\xi_{im} + \boldsymbol{x}_t \boldsymbol{\rho}_m)}, \qquad 1 \le i, j \le K$$

- Sampler uses Polya-Gamma latent variable methods (Polson et al., JASA, 2013)

Non-Homogeneous Hidden Markov Model

- Transition probabilities vary as a function of exogenous variable x
 - x = ENSO time-series, wind-shear index, etc
 - Transition probability vector modeled as multinomial logistic function of X

$$P(z_t = j | z_{t-1} = i, \boldsymbol{x}_t, \boldsymbol{\zeta}) = \frac{\exp(\xi_{ij} + \boldsymbol{x}_t \boldsymbol{\rho}_i)}{\sum_{m=1}^{K} \exp(\xi_{im} + \boldsymbol{x}_t \boldsymbol{\rho}_m)}, \qquad 1 \le i, j \le K$$

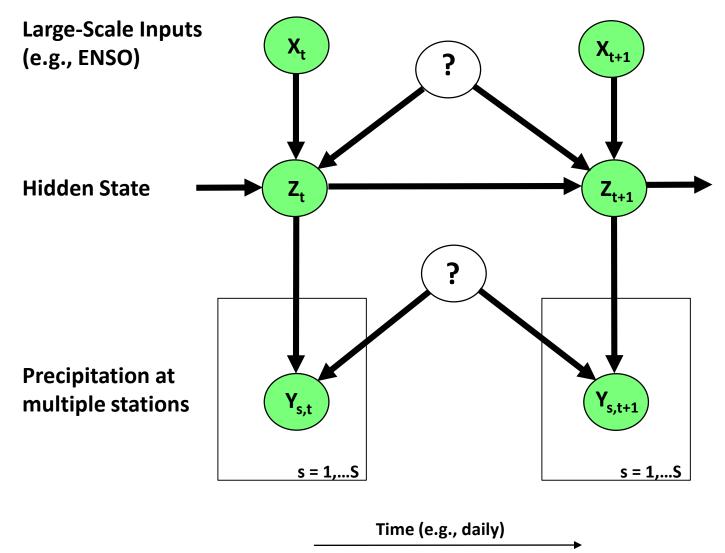
– Sampler uses Polya-Gamma latent variable methods (Polson et al., JASA, 2013)

• Emission distributions

- Mixture of delta function (no precipitation) + 2 exponentials
- Conditionally independent, station-specific
- Mixing weights are functions of additional exogenous variables (via GLM-probit)

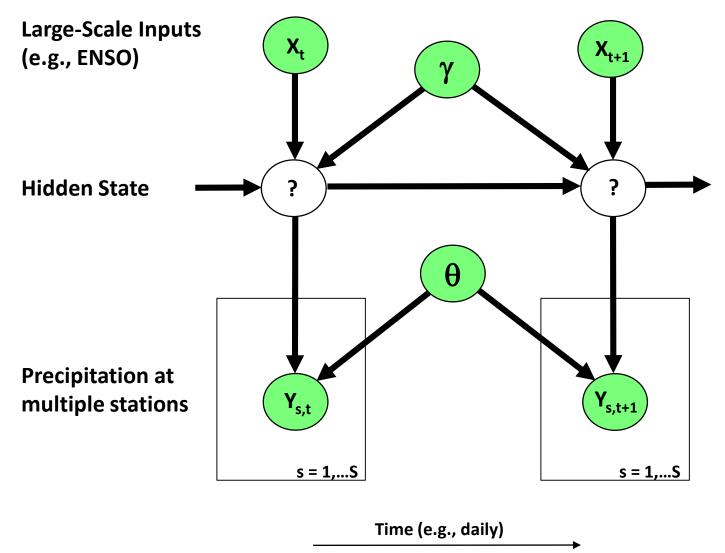
MCMC: Sample Parameters given Hidden States

(R software package NHMM, 2014)

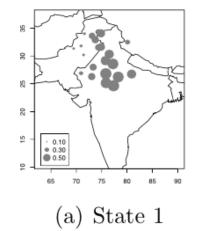


MCMC: Sample Hidden States given Parameters

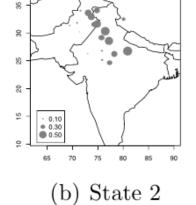
(R software package NHMM, 2014)

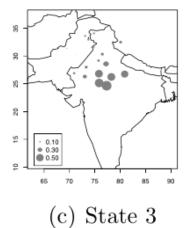


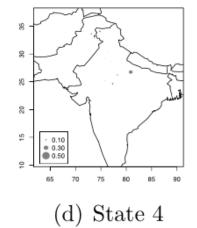
Examples of Inferred States



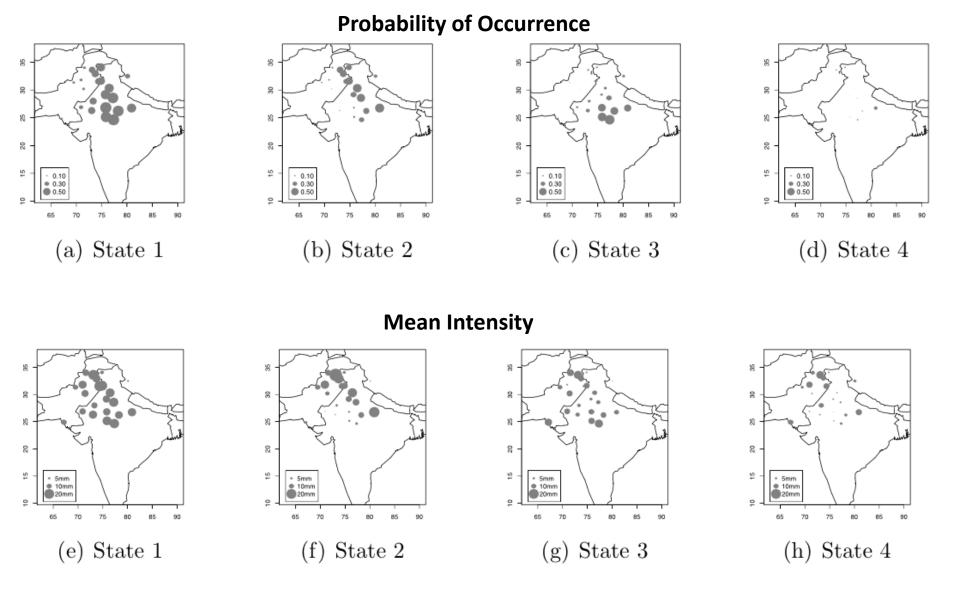
Probability of Occurrence







Examples of Inferred States

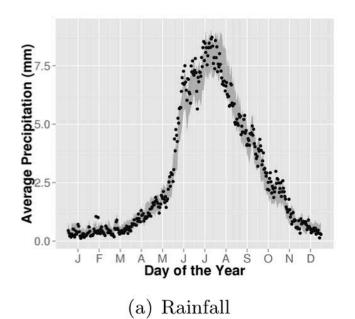


Padhraic Smyth: Climate Workshop, U Minnesota, Aug 2015: 48

Simulated and Actual Precipitation

Black dots = observed rainfall

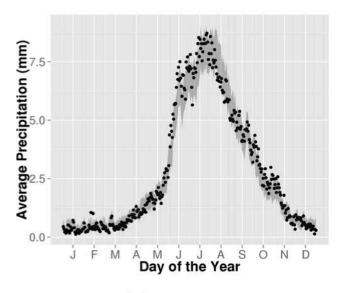
Grey bands = 95% posterior intervals from 1000 model simulations



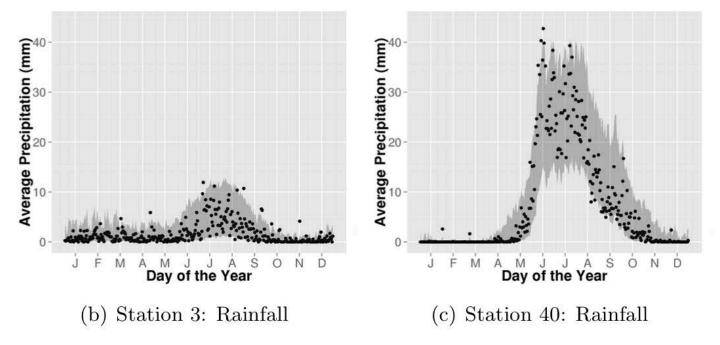
Simulated and Actual Precipitation

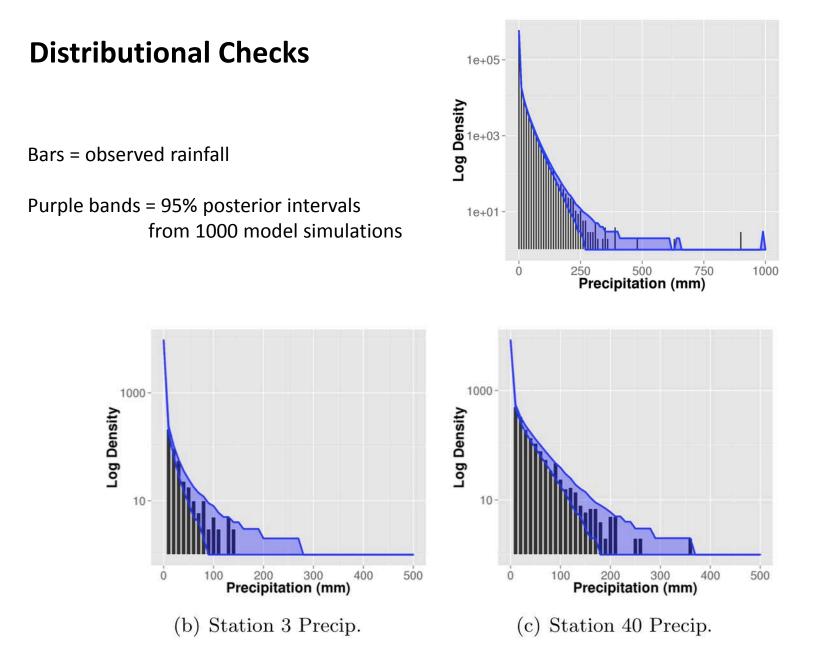
Black dots = observed rainfall

Grey bands = 95% posterior intervals from 1000 model simulations

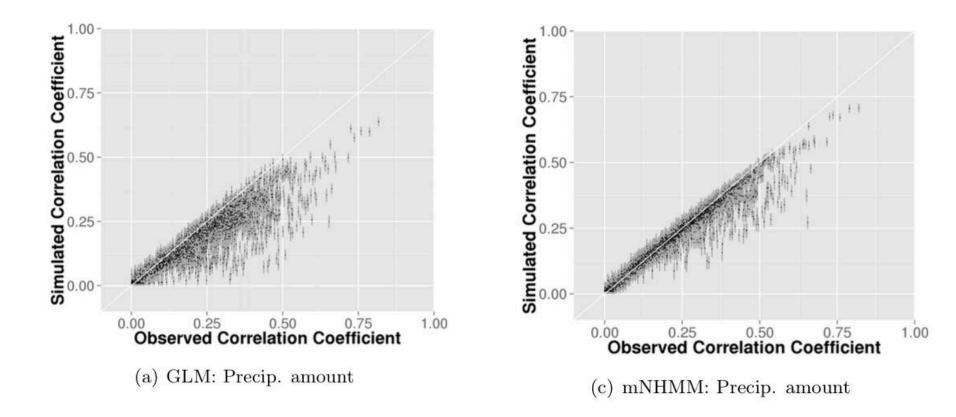


(a) Rainfall



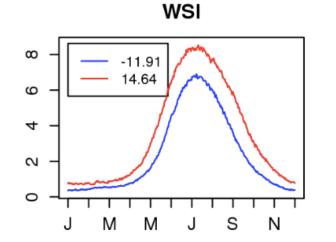


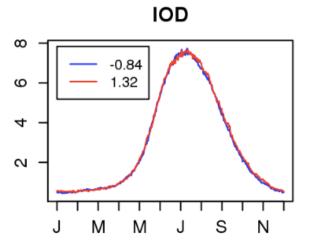
Observed and Simulated Spatial Correlations



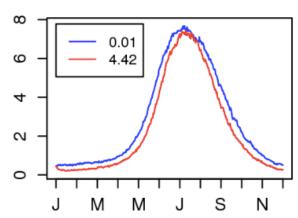
Effect of Input Variables

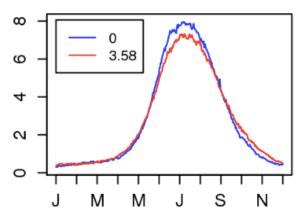
Red: simulations with variable's max value Blue: simulations with variable's min value





BSISO1





Concluding Comments

Recent Trends in Machine Learning: Scalability

- Computation-intensive techniques such as MCMC were limited to relatively small data sets in the past
 - This is no longer the case....
- Techniques for improving scalability
 - Distributed sampling algorithms
 - Approximate sampling methods
 - Variational inference
 - Operating on data subsamples
 - Combining optimization and sampling

- Focus for climate scientists should be on model structure
 - Inference should just be a "black box", turn the crank.....

Recent Trends in Machine Learning: Deep Learning

- Deep learning
 - neural networks with multiple hidden layers designed for high-dimensional prediction problems
 - Have recently been very successful in image and speech recognition tasks
- Useful for climate science? There are limitations...
 - Typically very large amounts of labeled (classification) data
 - Models can lack interpretability...very much "black box prediction"

• However....

- Significant research underway on developing unsupervised/latent variants
- Useful as feature extractors/detectors? whose outputs are integrated into spatiotemporal models with probabilistic semantics

Issues in Applying Machine Learning to Climate Science

- Emphasis on black-box predictive modeling
 - Dominance of applications where retraining the model is cheap and easy
- Widespread stationarity assumptions
 - Test data expected to be the same as training data

• The tyrany of tabula-rasa learning

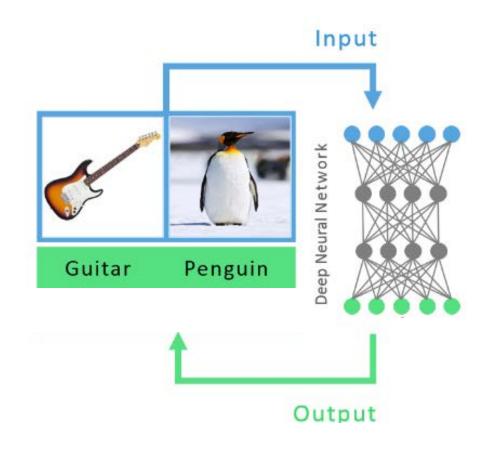
- Using domain knowledge is not "cool"
- e.g., lack of knowledge of spatial topography in models

• Calibration

Models don't know what they don't know

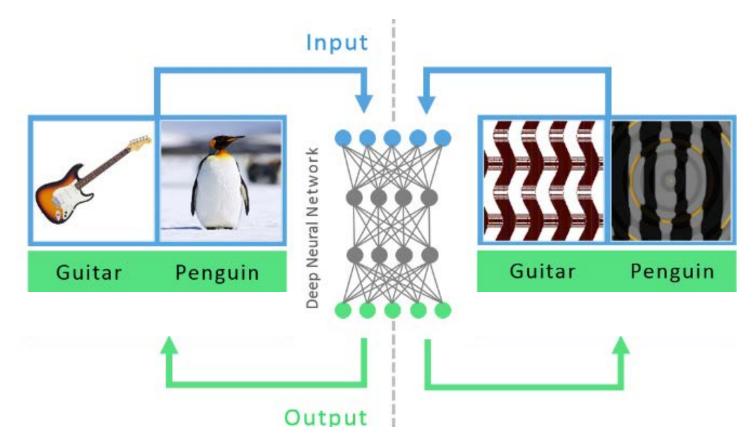
A Deep Neural Network for Image Recognition

From Nguyen, Yosinski, Clune, ArXiv preprint, 2014



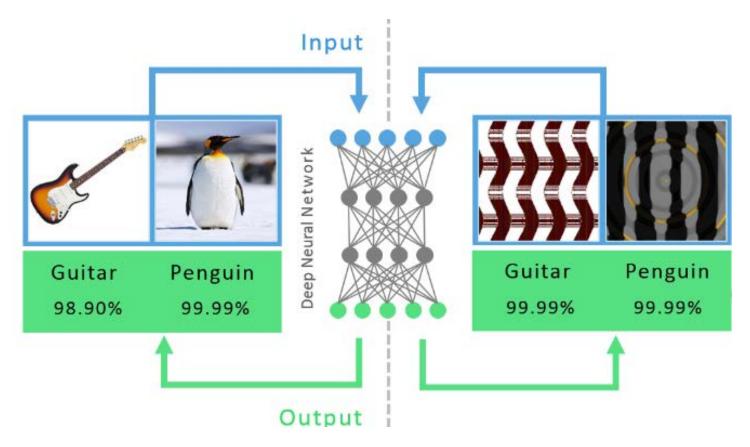
Extrapolation

From Nguyen, Yosinski, Clune, ArXiv preprint, 2014



Lack of Calibration

From Nguyen, Yosinski, Clune, ArXiv preprint, 2014



Summary

- Graphical models provide a broad framework for building complex statistical models
- The machine learning perspective on graphical models puts more emphasis on prediction and scalability (compared to statistics)
- For many climate science problems, graphical models (and Bayesian inference) tend to be a more natural fit than "black box" prediction models
- Advances in machine learning are promising, but its not clear yet what benefit they will provide to climate science

Acknowledgements

Colleagues and Students

Caroline Bain, Daniel Henke, Michael Ghil, Arthur Greene, Tracy Holsclaw, Scott Gaffney, Sergey Kirshner, Gudrun Magnusdottir, Andy Robertson

Funding

National Science Foundation WHERE DISCOVERIES BEGIN

