Publications
- Faghmous, J.H., M. Le, M. Uluyol, S. Chatterjee, and V. Kumar. Parameter-Free Spatio-Temporal Data Mining to Catalogue Global Ocean Dynamics. IEEE International Conference on Data Mining (ICDM) 2013.
- Faghmous, J. H., and Kumar, V. (2013). Spatio-Temporal Data Mining for Climate Data: Advances, Challenges, and Opportunities. In W. Chu (Ed.), Data Mining and Knowledge Discovery for Big Data: Methodologies, Challenges, and Opportunities.
- Faghmous, J. H., Uluyol, M., Styles, L., Le, M., Mithal, V., Boriah, S., and Kumar, V. (2011). Multiple Hypothesis Object Tracking For Unsupervised Self-Learning : An Ocean Eddy Tracking Application . In AAAI-13: Twenty-Seventh Conference on Artificial Intelligence (pp. 1277–1283).
- Faghmous, J. H., Styles, L., Mithal, V., Boriah, S., Liess, S., F. Vikebø, M. dos Santos Mesquita, and Kumar, V. (2012). EddyScan: A physically consistent ocean eddy monitoring application. In 2012 Conference on Intelligent Data Understanding (pp. 96–103).
- Faghmous, J. H., Styles, L., Gibson, N., and Kumar V. (2012). Spatio-temporal data mining methods for ocean eddy monitoring. The Second International Workshop on Climate Informatics, Boulder, CO, USA, September 20–21, 2012.
- Faghmous, J. H., Chamber, Y., Boriah, S., Liess, S., F. Vikebø, M. dos Santos Mesquita, and Kumar, V. (2012). A Novel and Scalable Spatio-Temporal Technique for Ocean Eddy Monitoring. In AAAI-12: Twenty-Sixth Conference on Artificial Intelligence.